BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

(Bidirectional Encoder Representations from Transformers)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Google Al Language

Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses

- Questions
- Related Work

Unsupervised Pre-training

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI alec@openai.com Karthik Narasimhan OpenAI karthikn@openai.com Tim Salimans OpenAI tim@openai.com Ilya Sutskever OpenAI ilyasu@openai.com

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattq}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Universal Language Model Fine-tuning for Text Classification

Jeremy Howard*

fast.ai University of San Francisco j@fast.ai

Sebastian Ruder*

Insight Centre, NUI Galway
Aylien Ltd., Dublin
sebastian@ruder.io

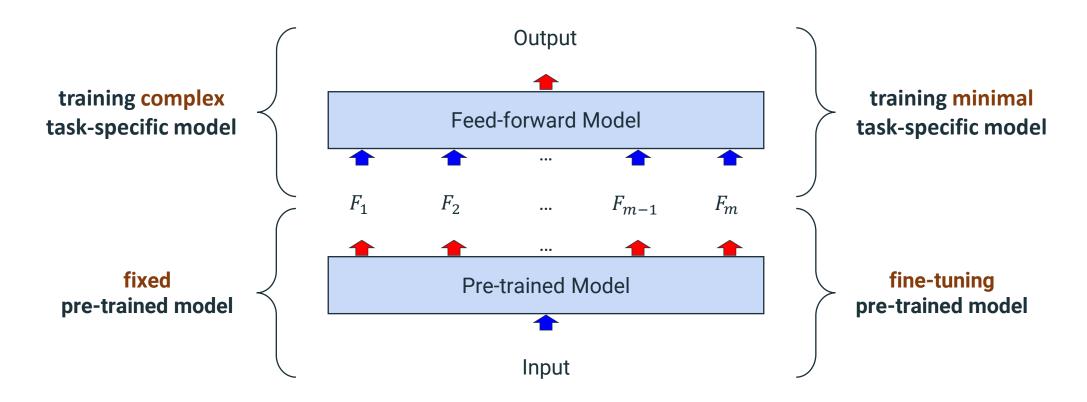
Semi-supervised Sequence Learning

Andrew M. Dai Google Inc. adai@google.com Quoc V. Le Google Inc. qvl@google.com

Unsupervised Pre-training

Feature-based Approach

Fine-tuning Approach



Unidirectional vs. Bidirectional LM

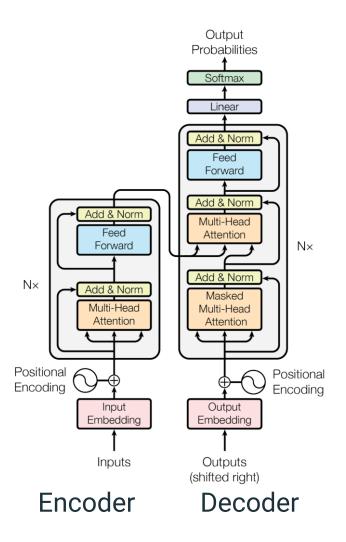
left context We went to the river bank.

We went to the **bank** to make a **deposit**. right context

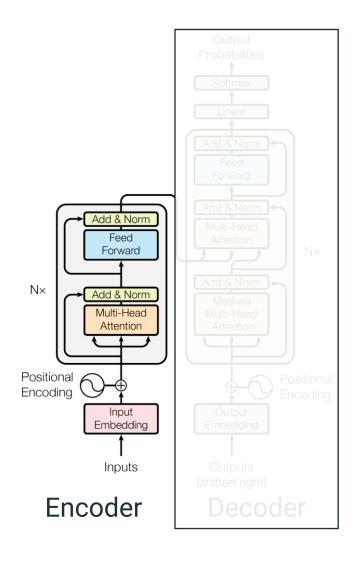
Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

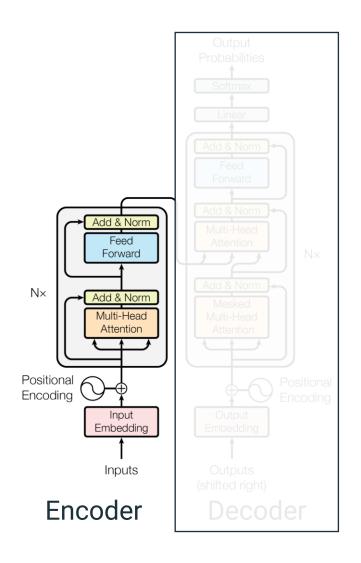
Architecture

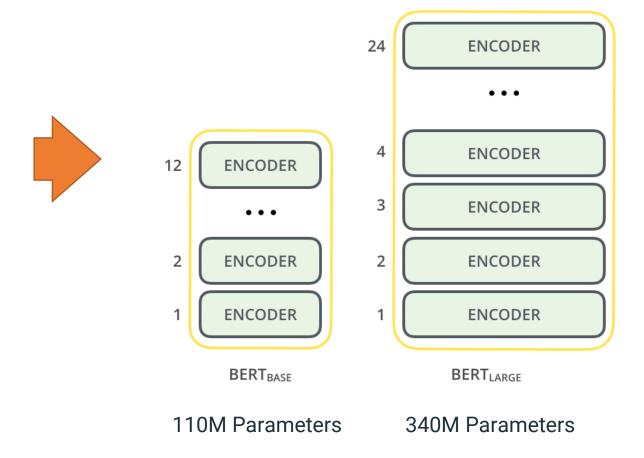


Architecture

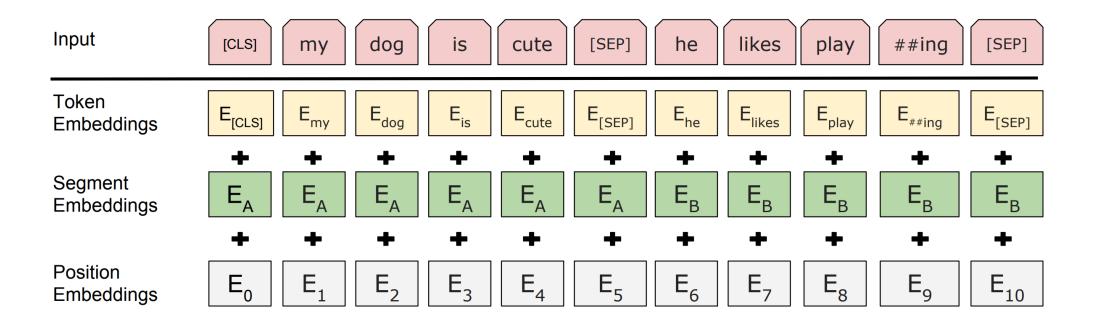


Architecture

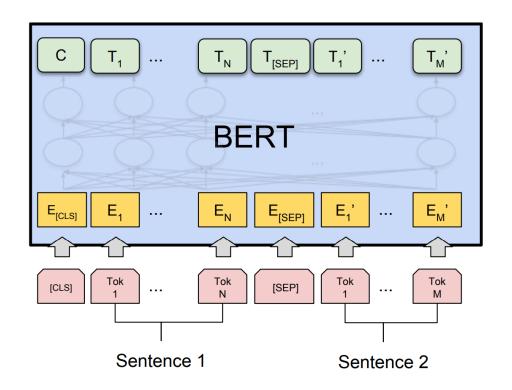




Input Representation



BERT Model



Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

Left-to-Right Language Model (LTR LM)

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

Alaska is about twelve time **bigger** than New York

left context

Masked Language Model (MLM)

left context right context Alaska is about twelve time bigger than New York 80%: Alaska is about twelve time [MASK] than New York 10%: Alaska is about twelve time apple than New York 10%: Alaska is about twelve time bigger than New York

Next Sequence Prediction (NSP)

```
Input: [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label: ISNext

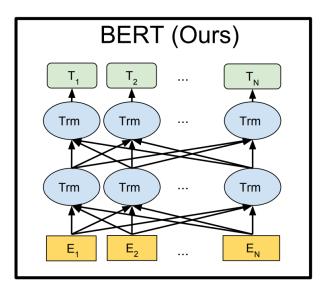
Input: [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

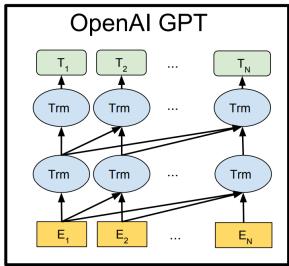
Label: NotNext
```

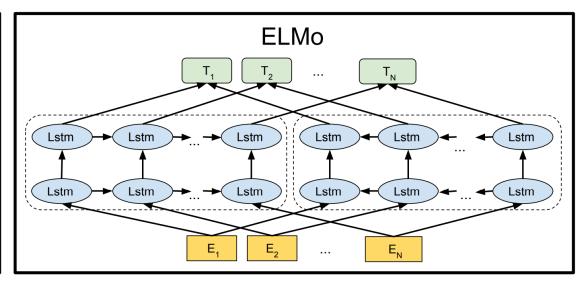
Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

BERT vs. GPT vs. ELMo







Multi-Genre Natural Language Inference (MNLI)

Sentence 1:

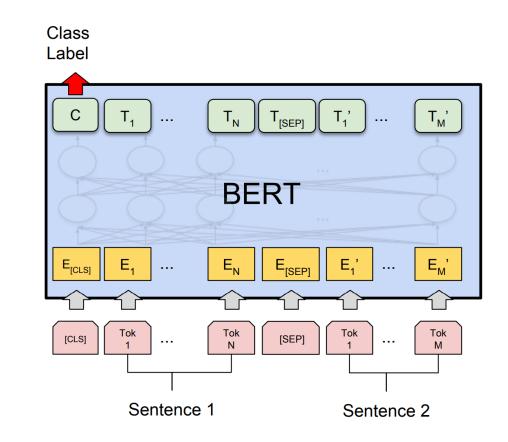
At the other end of Pennsylvania Avenue, people began to line up for a White House tour.

Sentence 2:

People formed a line at the end of Pennsylvania Avenue.

Label:

contradiction/neutral/entailment



Stanford Sentiment Treebank (SST-2)

Sentence:

It's probably not easy to make such a worthless film ...

Label:

positive/negative

Sentence:

Steven Spielberg brings us another masterpiece

Label:

positive/negative



General Langauge Understanding Evaluation (GLUE)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72. 1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Paragraph:

... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. ...

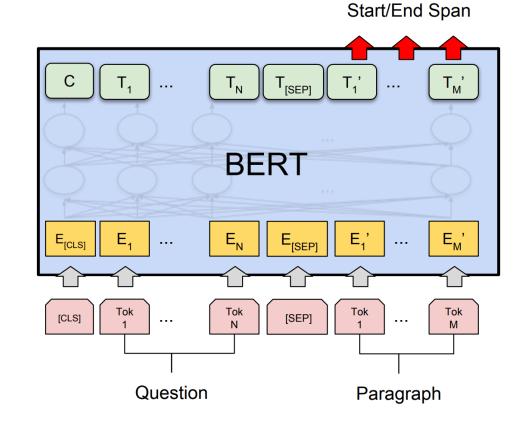
Question:

Where do water droplets collide with ice crystals to form precipitation?

Answer:

within a cloud

$$S \cdot T_i + E \cdot T_j$$



System	D	ev	Te	st			
•	EM	F1	EM	F1			
Top Leaderboard Systems (Dec 10th, 2018)							
Human	-	-	82.3	91.2			
#1 Ensemble - nlnet	-	-	86.0	91.7			
#2 Ensemble - QANet	-	-	84.5	90.5			
Publishe	ed						
BiDAF+ELMo (Single)	-	85.6	-	85.8			
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5			
Ours							
BERT _{BASE} (Single)	80.8	88.5	-	-			
BERT _{LARGE} (Single)	84.1	90.9	-	-			
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-			
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8			
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2			

System	D	ev	Test					
·	EM	F1	EM	F1				
Top Leaderboard Systems (Dec 10th, 2018)								
Human	-	-	82.3	91.2				
#1 Ensemble - nlnet	-	-	86.0	91.7				
#2 Ensemble - QANet	-	-	84.5	90.5				
Publishe	ed							
BiDAF+ELMo (Single)	-	85.6	-	85.8				
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5				
Ours								
BERT _{BASE} (Single)	80.8	88.5	-	-				
BERT _{LARGE} (Single)	84.1	90.9	-	-				
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-				
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8				
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2				

System	Dev		Test					
3	EM	F1	EM	F1				
Top Leaderboard Systems (Dec 10th, 2018)								
Human	-	-	82.3	91.2				
#1 Ensemble - nlnet	-	-	86.0	91.7				
#2 Ensemble - QANet	-	-	84.5	90.5				
Published								
BiDAF+ELMo (Single)	-	85.6	-	85.8				
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5				
Ours								
BERT _{BASE} (Single)	80.8	88.5	-	-				
BERT _{LARGE} (Single)	84.1	90.9	-	-				
BERT _{LARGE} (Ensemble)	85.8	91.8	-	_				
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8				
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2				

System	D	ev	Te	st				
•	EM	F1	EM	F1				
Top Leaderboard Systems (Dec 10th, 2018)								
Human	-	-	82.3	91.2				
#1 Ensemble - nlnet	-	-	86.0	91.7				
#2 Ensemble - QANet	-	-	84.5	90.5				
Publishe	ed							
BiDAF+ELMo (Single)	-	85.6	-	85.8				
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5				
Ours								
BERT _{BASE} (Single)	80.8	88.5	-	-				
BERT _{LARGE} (Single)	84.1	90.9	-	-				
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-				
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8				
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2				

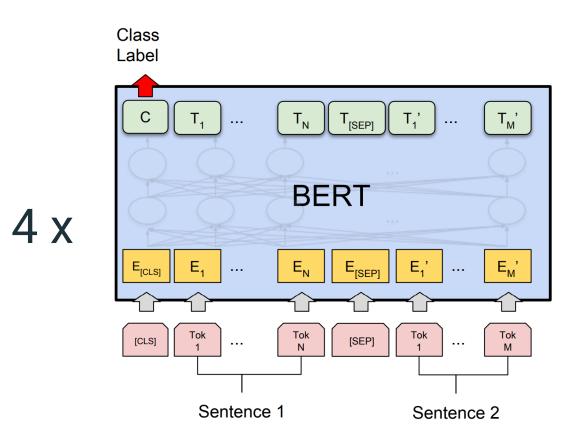
Situations With Adversarial Generations (SWAG)

Startphrase:

On stage, a woman takes a seat at the piano. She ...

Endings:

- a) sits on a bench as her sister plays with the doll.
- **b)** smiles with someone as the music plays.
- c) is in the crowd, watching the dancers.
- d) <u>nervously sets her fingers on</u> the keys.



Situations With Adversarial Generations (SWAG)

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT		52.7 59.2 78.0
BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†]	-	85.0

Ablation Study: Effect of Pre-Training

Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
$\overline{\mathrm{BERT}_{\mathrm{BASE}}}$	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8

Ablation Study: Effect of Pre-Training

	Dev Set						
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD		
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)		
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		

Ablation Study: Effect of Pre-Training

]	Dev Set		_
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
$\overline{\mathrm{BERT}_{\mathrm{BASE}}}$	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8

Ablation Study: Model Size

Ну	perpar	ams		Dev So	et Accura	ncy	
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
3	768	12	5.84	77.9	79.8	88.4	#H: Hidden Vector Size #A: Number of Attention Head
6	768	3	5.24	80.6	82.2	90.7	,, a ranisor or , according to reac
6	768	12	4.68	81.9	84.8	91.3	
12	768	12	3.99	84.4	86.7	92.9	BERTBASE
12	1024	16	3.54	85.7	86.9	93.3	•
24	1024	16	3.23	86.6	87.8	93.7	BERT _{LARGE}

Ablation Study: Feature-based

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
$\mathrm{BERT}_{\mathrm{LARGE}}$	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Ablation Study: Feature-based

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	_
Weighted Sum All 12 Layers	95.5	-

Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

Summary & Conclusion

- BERT is proposed to overcome the limitation of unidirectional LMs
- Masked LM is introduced for bidirectional pre-training
- NSP is introduced to enable BERT to understand the relationship between sentences
- BERT advances the state-of-the-art for eleven NLP tasks
- Bidirectional LMs are more powerful than left-to-right LMs
- Task-specific models can benefit from larger more expressive pre-trained representation
- BERT can also be used in a feature-based approach

Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

Experiments

Strengths

- BERT was evaluated on many different NLP tasks
- BERT_{BASE} has the same model size as GPT
- Evaluated the effects of their pretraining methods
- Clear description of the NLP tasks and the task-specific models

Weaknesses

- Often only the results of the dev set instead of the test set were used
- No comparison with a transformerbased model using left-to-right and right-to-left LMs.

BERT

Strengths

- Achieves better results than previous state-of-the-art methods
- Parallelizable architecture
- Fast fine-tuning (2-4 epochs)
- Minimal additional task-specific parameters are required
- Suitable for many different NLP tasks

Weaknesses

- Resource and time intensive pretraining (slower convergence than left-to-right pre-training)
- For small datasets sometimes finetuning is unstable
- Lack of ability to handle long text sequences (max. 512 tokens)

Questions?

Outline

- Background & Motivation
- BERT Architecture
- Pre-Training
- Experiments
- Summary & Conclusion
- Strengths & Weaknesses
- Questions
- Related Work

Domain Specific Pre-training

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Jinhyuk Lee (b) 1,t, Wonjin Yoon (b) 1,t, Sungdong Kim (b) 2, Donghyeon Kim (b) 1, Sunkyu Kim 6 1, Chan Ho So 6 3 and Jaewoo Kang 6 1,3,*

¹Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea, ²Clova Al Research, Naver Corp, Seong-Nam 13561, Korea and ³Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul 02841, Korea

Clinical BERT: Modeling Clinical Notes and Predicting Hospital Readmission

Kexin Huang

Health Data Science, Harvard T.H. Chan School of Public Health

Jaan Altosaar

Department of Physics, Princeton University

Rajesh Ranganath

Courant Institute of Mathematical Science, New York University

SCIBERT: A Pretrained Language Model for Scientific Text

Iz Beltagy Kyle Lo Arman Cohan Allen Institute for Artificial Intelligence, Seattle, WA, USA {beltagy, kylel, armanc}@allenai.org

Multilingual

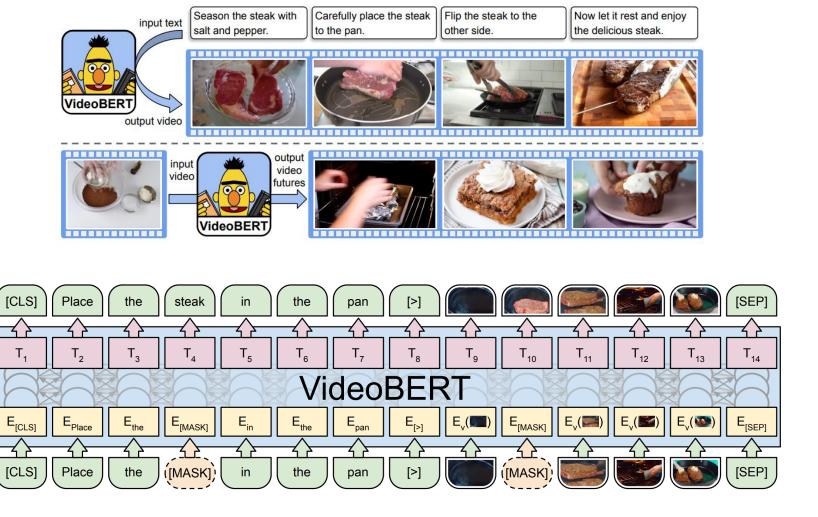
How multilingual is Multilingual BERT?

Telmo Pires* Eva Schlinger Dan Garrette

Google Research

{telmop, eschling, dhgarrette}@google.com

VideoBERT



Distilliation

Distilbert, a distilled version of Bert: smaller, faster, cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF
Hugging Face
{victor,lysandre,julien,thomas}@huggingface.co

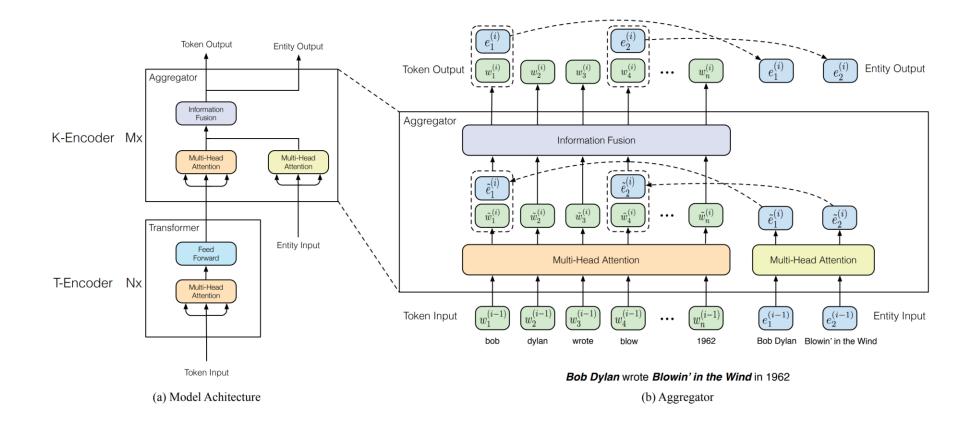
RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach

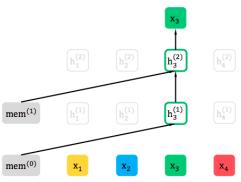
```
Myle Ott*§ Naman Goyal*§ Jingfei Du*§ Mandar Joshi†
     Yinhan Liu*§
Danqi Chen<sup>§</sup> Omer Levy<sup>§</sup> Mike Lewis<sup>§</sup> Luke Zettlemoyer<sup>†§</sup> Veselin Stoyanov<sup>§</sup>
```

```
† Paul G. Allen School of Computer Science & Engineering,
        University of Washington, Seattle, WA
     {mandar90, lsz}@cs.washington.edu
                  § Facebook AI
   {yinhanliu, myleott, naman, jingfeidu,
    danqi, omerlevy, mikelewis, lsz, ves}@fb.com
```

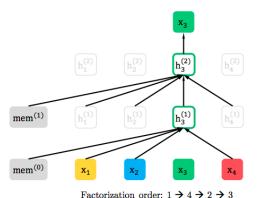
ERNIE

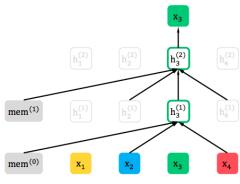


XLNet

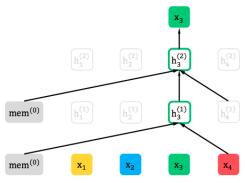


Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$





Factorization order: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$



Factorization order: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2$

XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang *1 , Zihang Dai *12 , Yiming Yang 1 , Jaime Carbonell 1 , Ruslan Salakhutdinov 1 , Quoc V. Le 2

¹Carnegie Mellon University, ²Google AI Brain Team {zhiliny,dzihang,yiming,jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

Additional Slides

Stanford Question Answering Dataset (SQuAD v2.0)

Paragraph:

... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. ...

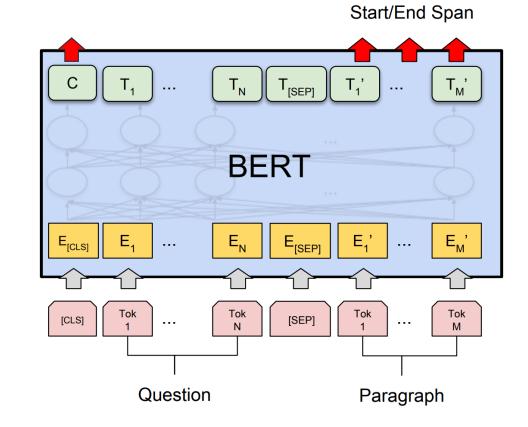
Question:

Where do water droplets collide with ice crystals to form precipitation?

Answer:

within a cloud

 $S \cdot C + E \cdot C < max_{i \le j} S \cdot T_i + E \cdot T_j$



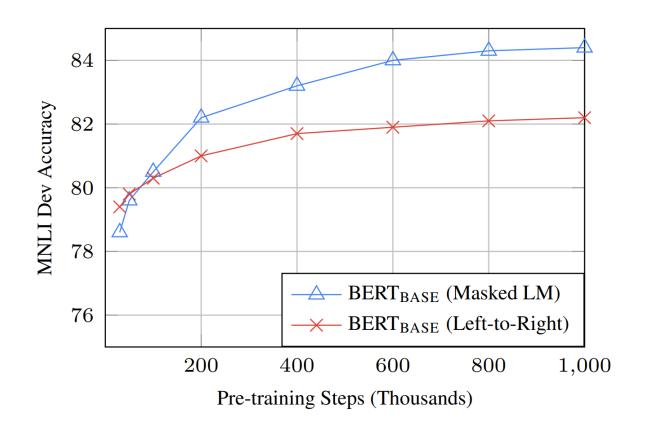
Stanford Question Answering Dataset (SQuAD v2.0)

System	Dev		Test					
-	EM	F1	EM	F1				
Top Leaderboard Systems (Dec 10th, 2018)								
Human	86.3	89.0	86.9	89.5				
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0				
#2 Single - nlnet	-	-	74.2	77.1				
Published								
unet (Ensemble)	-	-	71.4	74.9				
SLQA+ (Single)	-		71.4	74.4				
Ours								
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1				

Ablation Study: Masking Strategies

Masking Rates		Dev Set Results			
MASK	SAME	RND	MNLI	NER	
			Fine-tune	Fine-tune	Feature-based
80%	10%	10%	84.2	95.4	94.9
100%	0%	0%	84.3	94.9	94.0
80%	0%	20%	84.1	95.2	94.6
80%	20%	0%	84.4	95.2	94.7
0%	20%	80%	83.7	94.8	94.6
0%	0%	100%	83.6	94.9	94.6

Ablation Study: MLM vs. LTR LM



BERT Limitations

Commonsense Reasoning

Sentence:

The trophy doesn't fit in the suitcase because it is too small.

Answer:

the trophy / the suitcase

Attention Is (not) All You Need for Commonsense Reasoning

Tassilo Klein¹, Moin Nabi¹ ¹SAP Machine Learning Research, Berlin, Germany {tassilo.klein, m.nabi}@sap.com

Hella Swag: Can a Machine Really Finish Your Sentence?

Rowan Zellers[♣] Ari Holtzman[♠] Yonatan Bisk[♠] Ali Farhadi^{♠♡} Yejin Choi^♡ *Paul G. Allen School of Computer Science & Engineering, University of Washington [⋄]Allen Institute for Artificial Intelligence https://rowanzellers.com/hellaswag

Long Texts

CogLTX: Applying BERT to Long Texts

Ming Ding

Tsinghua University dm18@mails.tsinghua.edu.cn

Hongxia Yang

Alibaba Group yang.yhx@alibaba-inc.com **Chang Zhou**

Alibaba Group

ericzhou.zc@alibaba-inc.com

Jie Tang

Tsinghua University jietang@tsinghua.edu.cn

What BERT is not

Context	BERT _{LARGE} predictions
Pablo wanted to cut the lumber he had bought to make some shelves. He asked his neighbor if he could borrow her	car, house, room, truck, apartment
The snow had piled up on the drive so high that they couldn't get the car out. When Albert woke up, his father handed him a	note, letter, gun, blanket, newspaper
At the zoo, my sister asked if they painted the black and white stripes on the animal. I explained to her that they were natural features of a	cat, person, human, bird, species