

High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion) Robin Rombach, Andreas Blattman, Dominik Lorenz, Patrick Esser, Björn Ommer

Presented by: Marcus Roberto Nielsen

Seminar – Advanced Topics in Machine Learning and Data Science Date: 27.03.2024

Generative models for image synthesis

Discriminator Generator GAN: Adversarial \mathbf{x}' (0/1 \mathbf{Z} х \mathbf{X} $D(\mathbf{x})$ $G(\mathbf{z})$ training Encoder Decoder VAE: maximize \mathbf{z} \mathbf{x} \mathbf{x}' $p_{\theta}(\mathbf{x}|\mathbf{z})$ $q_{\phi}(\mathbf{z}|\mathbf{x})$ variational lower bound Inverse Flow Flow-based models: \mathbf{x}' \mathbf{Z} \mathbf{x} $f^{-1}(z)$ $f(\mathbf{x})$ Invertible transform of distributions Diffusion models: \mathbf{x}_0 $\rightarrow \mathbf{x}_1 \longrightarrow \mathbf{x}_2$ \mathbf{Z} Gradually add Gaussian Figure 1: Generated samples on CelebA-HQ 256 × 256 (left) and unconditional CIFAR10 (right) noise and then reverse

Fig. 1. Overview of different types of generative models.

Image credit: Weng, Lilian. (Jul. 2021)

Image credit: Ho, et.al. (2020)

Background – Diffusion Model (DM)

Goal: Learn data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$

Forward diffusion process

• Fixed to a Markov chain

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Adds Gaussian noise in each timestep

 $q(\mathbf{x}_t | \mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$

• Admits sampling at arbitrary timestep in closed form $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$ $\alpha_t \coloneqq 1 - \beta_t \qquad \bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$ Everything is Gaussian

Reverse process

- Defined as a Markov chain $p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})$
- Diffusion Model is defined as $p_{\theta}(\mathbf{x}_0) \coloneqq \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$
- Gaussian transitions in each timestep $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$ $p(\mathbf{x}_{T}) = \mathcal{N}(\mathbf{x}_{T}; \mathbf{0}, \mathbf{I})$

Figure 2: The directed graphical model considered in this work.

Image credit: Ho, et.al. (2020)

Background – Diffusion model

Training

• Variational bound on negative log likelihood:

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_{0})\right] \leq \mathbb{E}_{q}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] = \mathbb{E}_{q}\left[-\log p(\mathbf{x}_{T}) - \sum_{t \geq 1}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}\right] =: L$$

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}}\right]$$

- Condition $q(x_{t-1}|x_t)$ on x_0 (Bayes Theorem) $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$
- Parameterization of reverse process

$$(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),$$
$$\boldsymbol{\mathcal{X}}$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$$

• KL-divergence between two Gaussians

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$

Background – Diffusion model

Recall: $q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$

- Reparameterization trick $\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \boldsymbol{\epsilon} \text{ for } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Rewrite parameterization $\mu_{\theta}(\mathbf{x}_{t},t) = \tilde{\mu}_{t} \left(\mathbf{x}_{t}, \frac{1}{\sqrt{\bar{\alpha}_{t}}} (\mathbf{x}_{t} \sqrt{1 \bar{\alpha}_{t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t})) \right) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} \frac{\beta_{t}}{\sqrt{1 \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right)$

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] \longrightarrow \mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Simplified objective

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \Big[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2} \Big]$$

Background – Diffusion model

Recall parameterization of reverse process and training objective

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t},t),\sigma_{t}^{2}\mathbf{I})$$

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right)$$

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t) \right\|^{2} \right]$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Image credit: Ho, et.al. (2020)

UNet

- Contracting path
 - encoder layers
 - capture contextual information
 - reduce the spatial resolution
- Expansive path
 - decoder layers
 - decode encoded information

Image credit: Aditya Taparia (2023)

• Due to the UNet backbone of DMs, they offer excellent inductive biases for spatial data

Motivation – Latent Diffusion Models

- Diffusion models achieves state-of-the-art synthesis results on image data
- Powerful, yet simple model architecture

Problems

- Mode-covering behaviour (likelihood-based model)
- Operates directly in the high-dimensional pixel space
- Requires massive computational resources
- Expensive in time and memory

Proposed Method: Latent Diffusion Models

- Operates in a lower-dimensional latent space
- Reduces resource consumption for both training and sampling
- Detail preservation

Main contributions of the paper

- 1. LDMs scales more gracefully to higher dimensional data
- 2. Reducing computational costs, while retaining competitive performance
- 3. Reducing inference costs compared to pixel-based diffusion approaches
- 4. Does not require a delicate weighting of reconstruction and generative abilities
- 5. Can be applied in a convolutional fashion
- 6. Enables multi-modal training via cross-attention

LDMs require less aggressive downsampling

Analysis of trained Diffusion Models in pixel space

Two-stage learning process:

- 1. Perceptual compression
 - Removes high-frequency details
 - Learns a little semantic variation
- 2. Semantic compression
 - Learns the semantic and conceptual composition of the data

Idea:

• Find a perceptually equivalent, but computationally more suitable space to train diffusion models for high-resolution image synthesis

Latent diffusion models (LDMs)

Goal: Learn data distribution $z_0 \sim p(z_0)$

Two-phased learning process

1. Train an autoencoder to obtain a low-dimensional latent space

Pixel-spaceLatent spacePixel-space $x \in \mathbb{R}^{H \times W \times 3}$ $\mathcal{E}(x)$ $z \in \mathbb{R}^{h \times w \times c}$ $\mathcal{D}(z)$ $\tilde{x} \in \mathbb{R}^{H \times W \times 3}$

Downsampling factor: f = H/h = W/w

Model architecture

Image credit: Rombach, et.al. (2022)

2. Train DMs in the learned latent space

Autoencoder model – Regularization of latent space

Adversarial training objective

$$L_{\text{Autoencoder}} = \min_{\mathcal{E}, \mathcal{D}} \max_{\psi} \left(L_{rec}(x, \mathcal{D}(\mathcal{E}(x))) - L_{adv}(\mathcal{D}(\mathcal{E}(x))) + \log D_{\psi}(x) + L_{reg}(x; \mathcal{E}, \mathcal{D}) \right)$$

Reconstruction loss: $L_{rec}(x, \mathcal{D}(\mathcal{E}(x)))$

Adversarial loss: $-L_{adv}(\mathcal{D}(\mathcal{E}(x))) + \log D_{\psi}(x)$

Regularization term: $L_{reg}(x; \mathcal{E}, \mathcal{D})$

KL-regularization

 Imposes a slight KL-penalty towards a standard normal on the learned latent

Image credit: Joseph Rocca (2019)

VQ-regularization

 Learns a codebook of |Z| different exemplars

Transformers and Cross-Attention

Attention mechanism

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Multi-head Attention

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

Scaled Dot-Product Attention

Image credit: Vaswani, et.al. (2017)

Conditional Latent Distance Models

Conditioning mechanisms

- DMs can also model conditional distributions p(z|y)
- Pre-processing \rightarrow domain specific encoder
- Augment the UNet backbone with a cross-attention mechanism

Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$, with

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y)$$

Training objective

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \left[\| \epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y)) \|_2^2 \right]$$

Model architecture

Image credit: Rombach, et.al. (2022)

ETH zürich

Advantages of the learning process for Latent Diffusion Models

- 1. Train the universal autoencoding stage only once
- 2. Does not require excessive spatial compression
- 3. Efficient image generation from the latent space with a single network pass
- 4. Does not require a delicate weighting of reconstruction and generative abilities
- 5. Reduces computational demands
- 6. Exploits the inductive bias of DMs
- 7. Obtain general-purpose compression models

LDMs require less aggressive downsampling

Experiments – Perceptual Compression Tradeoffs

Training

Evaluated on the ImageNet dataset

- Low perceptual compression (i.e. low f) \rightarrow large train times
- High perceptual compression (i.e. high f) \rightarrow limits overall sample quality
- Optimal compression tradeoff: LDM-{4-16}

ETH zürich

Experiments – Perceptual Compression Tradeoffs

Sampling

Different markers indicate {10,20,50,100,200} sampling steps using DDIM from right to left

- Low perceptual compression (i.e. low f) \rightarrow lower sample throughput
- High perceptual compression (i.e. high f) \rightarrow limits overall sample quality, higher sample throughput
- Optimal compression rate: LDM-{4-16} (left) and LDM-{4-8} (right)

Experiments – Effects of regularization

KL-Regularization vs. VQ-Regularization

- Better reconstruction capabilities (KL)
- Better sample quality (KL)

f	$ \mathcal{Z} $	c	R-FID↓	R-IS ↑	PSNR ↑	PSIM ↓	SSIM ↑
16 VQGAN [23]	16384	256	4.98	_	19.9 ± 3.4	$1.83{\scriptstyle~\pm 0.42}$	0.51 ± 0.18
16 VQGAN [23]	1024	256	7.94	-	19.4 ±3.3	1.98 ± 0.43	$0.50{\scriptstyle~\pm 0.18}$
8 DALL-E [66]	8192	-	32.01	-	22.8 ± 2.1	$1.95{\scriptstyle~\pm 0.51}$	$0.73 \pm \scriptscriptstyle 0.13$
32	16384	16	31.83	$40.40{\scriptstyle~\pm1.07}$	17.45 ± 2.90	$2.58{\scriptstyle~\pm 0.48}$	0.41 ± 0.18
16	16384	8	5.15	144.55 ± 3.74	20.83 ± 3.61	1.73 ± 0.43	0.54 ± 0.18
8	16384	4	1.14	201.92 ± 3.97	23.07 ± 3.99	1.17 ± 0.36	0.65 ± 0.16
8	256	4	1.49	194.20 ± 3.87	$22.35{\scriptstyle~\pm3.81}$	1.26 ± 0.37	0.62 ± 0.16
4	8192	3	0.58	224.78 ± 5.35	27.43 ± 4.26	0.53 ± 0.21	0.82 ± 0.10
4†	8192	3	1.06	221.94 ± 4.58	25.21 ± 4.17	0.72 ± 0.26	$0.76{\scriptstyle~\pm0.12}$
4	256	3	0.47	223.81 ± 4.58	26.43 ± 4.22	0.62 ± 0.24	0.80 ± 0.11
2	2048	2	0.16	232.75 ±5.09	$30.85{\scriptstyle~\pm4.12}$	0.27 ± 0.12	$0.91{\scriptstyle~\pm 0.05}$
2	64	2	0.40	$226.62 \scriptstyle \pm 4.83$	$29.13{\scriptstyle~\pm3.46}$	$0.38{\scriptstyle~\pm 0.13}$	0.90 ± 0.05
32	KL	64	2.04	189.53 ± 3.68	22.27 ± 3.93	1.41 ± 0.40	0.61 ± 0.17
32	KL	16	7.3	132.75 ± 2.71	20.38 ± 3.56	1.88 ± 0.45	0.53 ± 0.18
16	KL	16	0.87	210.31 ± 3.97	24.08 ± 4.22	1.07 ± 0.36	0.68 ± 0.15
16	KL	8	2.63	178.68 ± 4.08	21.94 ±3.92	1.49 ± 0.42	$0.59{\scriptstyle~\pm 0.17}$
8	KL	4	0.90	209.90 ± 4.92	24.19 ± 4.19	1.02 ± 0.35	0.69 ± 0.15
4	KL	3	0.27	227.57 ± 4.89	27.53 ± 4.54	0.55 ± 0.24	$0.82{\scriptstyle~\pm0.11}$
2	KL	2	0.086	232.66 ± 5.16	32.47 ± 4.19	$0.20{\scriptstyle~\pm 0.09}$	$0.93{\scriptstyle~\pm 0.04}$

Table 8. Complete autoencoder zoo trained on OpenImages, evaluated on ImageNet-Val. † denotes an attention-free autoencoder.

Experiments – Image Generation with Latent Diffusion

Setup

ETH zürich

• Train unconditional models of 256² images on CelebA-HQ, FFHQ, LSUN-Churches and – Bedrooms dataset

Evaluation metrics

1. sample quality (FID score)

2. coverage of data manifold (Precision and Recall)

CelebA-H	IQ 256 \times	256		FFHQ 256 × 256				
Method	$\mathrm{FID}\downarrow$	Prec. ↑	Recall †		Method $FID \downarrow$		Prec. ↑	Recall ↑
DC-VAE [63]	15.8	-	-		ImageBART [21]	9.57	-	-
VQGAN+T. [23] (k=400)	10.2	-	-	U	-Net GAN (+aug) [77]	10.9 (7.6)	-	-
PGGAN [39]	8.0	-	-		UDM [43]	5.54	-	-
LSGM [93]	7.22	-	-		StyleGAN [41]	4.16	0.71	0.46
UDM [43]	7.16	-	-		ProjectedGAN [76]	3.08	0.65	<u>0.46</u>
<i>LDM-4</i> (ours, 500-s [†])	5.11	0.72	0.49		LDM-4 (ours, 200-s)	4.98	0.73	0.50
LSUN-Chu	rches 25	6×256		LSUN-Bedrooms 256×256				
Method	$\mathrm{FID}\downarrow$	Prec. ↑	Recall ↑		Method	$FID\downarrow$	Prec. ↑	Recall ↑
DDPM [30]	7.89	-	-		ImageBART [21]	5.51	-	-
ImageBART [21]	7.32	-	-		DDPM [30]	4.9	-	-
PGGAN [39]	6.42	-	-		UDM [43]	4.57	-	-
StyleGAN [41]	4.21	-	-		StyleGAN [41]	2.35	0.59	0.48
StyleGAN2 [42]	3.86	-	-		ADM [15]	1.90	0.66	0.51
ProjectedGAN [76]	1.59	0.61	<u>0.44</u>		ProjectedGAN [76]	1.52	<u>0.61</u>	0.34
LDM-8* (ours, 200-s)	4.02	0.64	0.52		LDM-4 (ours, 200-s)	2.95	0.66	<u>0.48</u>

Class-conditional ImageNet

• Using downsampling factor f=4

ImageNet

Method	FID↓	IS↑	Precision↑	Recall↑	Nparams	
BigGan-deep [3]	6.95	$\frac{203.6 \pm 2.6}{100.98}$ 186.7	0.87	0.28	340M	-
ADM [15]	10.94		0.69	0.63	554M	250 DDIM steps
ADM-G [15]	<u>4.59</u>		<u>0.82</u>	0.52	608M	250 DDIM steps
LDM-4 (ours)	10.56	103.49±1.24	0.71	$\frac{0.62}{0.48}$	400M	250 DDIM steps
LDM-4-G (ours)	3.60	247.67±5.59	0.87		400M	250 steps, c.f.g [32], $s = 1.5$

Transformer Encoders for LDMs

- Text-to-image modeling
 - 1.45B parameter KL-regularized LDM conditioned on language prompts
 - BERT-tokenizer
 - Domain specific encoder as a transformer
 - MS-COCO validation set

Text-Conditional Image Synthesis							
Method	$\mathrm{FID}\downarrow$	IS↑	Nparams				
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017			
LAFITE [†] [109]	26.94	<u>26.02</u>	75M				
GLIDE* [59]	<u>12.24</u>	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$			
Make-A-Scene* [26]	11.84		4B	c.f.g for AR models [98] $s = 5$			
LDM-KL-8	23.31	$20.03 {\scriptstyle \pm 0.33 \\ \textbf{30.29} {\scriptstyle \pm \textbf{0.42}}}$	1.45B	250 DDIM steps			
LDM-KL-8-G*	12.63		1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$			

Convolutional Sampling Beyond 256²

- Concatenate spatially aligned conditioning information to the input of ϵ_{θ}
- LDMs can serve as a general purpose image-toimage translation model
- Useful for semantic synthesis, super-resolution and image inpainting

Figure 9. A *LDM* trained on 256^2 resolution can generalize to larger resolution (here: 512×1024) for spatially conditioned tasks such as semantic synthesis of landscape images. See Sec. 4.3.2.

Super-Resolution with Latent Diffusion (LDM-SR)

- Condition on low-resolution images via concatenation, i.e. τ_{θ} is the identity function
- Fix the image degradation to a bicubic interpolation with 4x downsampling
- Autoencoding model pretrained on OpenImages (VQ-reg.)

bicubic	LDM-SR	SR3

Figure 10. ImageNet $64 \rightarrow 256$ super-resolution on ImageNet-Val. *LDM-SR* has advantages at rendering realistic textures but SR3 can synthesize more coherent fine structures. See appendix for additional samples and cropouts. SR3 results from [72].

	SR on ImageNet			
User Study	Pixel-DM (f1)	LDM-4		
Task 1: Preference vs GT ↑	16.0%	30.4%		
Task 2: Preference Score ↑	29.4%	70.6%		

Method	$\mathrm{FID}\downarrow$	IS \uparrow	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$	Nparams	$\left[\frac{\text{samples}}{s}\right](*)$
Image Regression [72] SR3 [72]	15.2 5.2	121.1 180.1	27.9 <u>26.4</u>	0.801 <u>0.762</u>	625M 625M	N/A N/A
LDM-4 (ours, 100 steps) emphLDM-4 (ours, big, 100 steps) LDM-4 (ours, 50 steps, guiding)	$\frac{2.8}{2.4}^{\dagger} / \frac{4.8}{4.3}^{\ddagger}$ $4.4^{\dagger} / 6.4^{\ddagger}$	166.3 <u>174.9</u> 153.7	$\begin{array}{c} 24.4{\scriptstyle\pm}3.8\\ 24.7{\scriptstyle\pm}4.1\\ 25.8{\scriptstyle\pm}3.7\end{array}$	$\begin{array}{c} 0.69 {\pm} 0.14 \\ 0.71 {\pm} 0.15 \\ 0.74 {\pm} 0.12 \end{array}$	169M 552M <u>184M</u>	4.62 4.5 0.38

Image Inpainting with LDMs

• Latent diffusion models improves sample throughput and sample quality for image inpainting tasks

Model (regtype)	train throughput samples/sec.	sampling @256	throughput [†] @512	train+val hours/epoch	FID@2k epoch 6
LDM-1 (no first stage)	0.11	0.26	0.07	20.66	24.74
LDM-4 (KL, w/ attn)	0.32	0.97	0.34	7.66	15.21
LDM-4 (VQ, w/ attn)	0.33	0.97	0.34	7.04	14.99
LDM-4 (VQ, w/o attn)	0.35	0.99	0.36	6.66	15.95

	Inpainting on Places				
User Study	LAMA [88]	LDM-4			
Task 1: Preference vs GT ↑	13.6%	21.0%			
Task 2: Preference Score ↑	31.9%	68.1%			

Figure 11. Qualitative results on object removal with our *big*, *w*/*ft* inpainting model. For more results, see Fig. 22.

Related work

Generative Models for image synthesis

- Generative Adversarial Networks (GANs)
 - + efficient sampling of high-dimensional images and good perceptual quality
 - difficult to optimize and doesn't capture full data distribution (mode-collapse)
- Variational autoencoders (VAEs)
 - + efficient synthesis of images
 - worse sample quality than GANs
- Autoregressive models (ARM)
 - + strong performance in density estimation
 - computationally demanding architecture and sequential sampling process

Assessment of paper and model

Pros

- Ground-breaking paper in the field of image synthesis
- Offers a method for powerful high-resolution image generation using fewer computational resources
- Applications in a diverse range of settings (cross-attention and conditioning mechanisms)
 - Text-to-image generation
 - Image inpainting
 - Image super-resolution

Cons

- Some segments are explained very briefly with few details regarding implementation
- Slower sampling speed compared to GANs
- Limited performance in cases where fine-grained accuracy in pixel-space is crucial (e.g. superresolution)

Thanks for listening to my presentation!

Feel free to ask any questions

A pikachu fine dining with a view over Zurich

Generate image

low quality

