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Generative models for image synthesis
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Image credit: Weng, Lilian. (Jul. 2021) Image credit: Ho, et.al. (2020)



Background – Diffusion Model (DM)
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Image credit: Ho, et.al. (2020)

Forward diffusion process

• Fixed to a Markov chain

• Adds Gaussian noise in each timestep

• Admits sampling at arbitrary timestep in closed form

Reverse process

• Defined as a Markov chain

• Gaussian transitions in each timestep

• Diffusion Model is defined as

Everything is GaussianGoal: Learn data distribution



Background – Diffusion model
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• Variational bound on negative log likelihood: 

Training

• Possible to decompose training objective:

• KL-divergence between two Gaussians

• Condition 𝑞 𝑥𝑡−1 𝑥𝑡 on 𝑥0 (Bayes Theorem)

• Parameterization of reverse process

≈



Background – Diffusion model
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Simplified objective

• Reparameterization trick

• Rewrite parameterization

Recall:



Background – Diffusion model
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Recall parameterization of reverse process and training objective

Image credit: Ho, et.al. (2020)



UNet
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• Contracting path

• encoder layers

• capture contextual information

• reduce the spatial resolution

• Expansive path

• decoder layers

• decode encoded information

• Due to the UNet backbone of DMs, they offer excellent inductive biases for spatial data 

Image credit: Aditya Taparia (2023)



Motivation – Latent Diffusion Models
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• Diffusion models achieves state-of-the-art synthesis results on image data

• Powerful, yet simple model architecture

Problems

• Mode-covering behaviour (likelihood-based model)

• Operates directly in the high-dimensional pixel space

• Requires massive computational resources

• Expensive in time and memory

Proposed Method: Latent Diffusion Models

• Operates in a lower-dimensional latent space

• Reduces resource consumption for both training and sampling

• Detail preservation



Main contributions of the paper
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1. LDMs scales more gracefully to higher dimensional data

2. Reducing computational costs, while retaining competitive performance

3. Reducing inference costs compared to pixel-based diffusion approaches

4. Does not require a delicate weighting of reconstruction and generative abilities

5. Can be applied in a convolutional fashion

6. Enables multi-modal training via cross-attention 

Image credit: Rombach, et.al. (2022)

LDMs require less aggressive downsampling



Analysis of trained Diffusion Models in pixel space
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Two-stage learning process:

1. Perceptual compression

• Removes high-frequency details

• Learns a little semantic variation

2. Semantic compression

• Learns the semantic and conceptual

composition of the data

Idea: 

• Find a perceptually equivalent, but computationally

more suitable space to train diffusion models for 

high-resolution image synthesis
Image credit: Rombach, et.al. (2022)



Latent diffusion models (LDMs)
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1. Train an autoencoder to obtain a low-dimensional latent space

Model architecture

Image credit: Rombach, et.al. (2022)

Pixel-space Latent space

Downsampling factor:

Training objective for LDMsTraining objective for DMs

Pixel-space Latent space

Pixel-space

2. Train DMs in the learned latent space

Two-phased learning process

Goal: Learn data distribution



Autoencoder model – Regularization of latent space
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KL-regularization

• Imposes a slight KL-penalty towards a 

standard normal on the learned latent

Adversarial training objective

Reconstruction loss: 

VQ-regularization

• Learns a codebook of |Z| different

exemplars

Image credit: Joseph Rocca (2019)

Adversarial loss:

Regularization term:



Transformers and Cross-Attention
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• Attention mechanism

• Multi-head Attention

Image credit: Vaswani, et.al. (2017)



Conditional Latent Distance Models
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Conditioning mechanisms Model architecture

Image credit: Rombach, et.al. (2022)

• Training objective

• DMs can also model conditional distributions

• Pre-processing → domain specific encoder

• Augment the UNet backbone with a cross-attention mechanism



Advantages of the learning process for Latent Diffusion Models
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1. Train the universal autoencoding stage only once

2. Does not require excessive spatial compression

3. Efficient image generation from the latent space with a single network pass

4. Does not require a delicate weighting of reconstruction and generative abilities

5. Reduces computational demands

6. Exploits the inductive bias of DMs

7. Obtain general-purpose compression models

Image credit: Rombach, et.al. (2022)

LDMs require less aggressive downsampling



Experiments – Perceptual Compression Tradeoffs
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• Low perceptual compression (i.e. low f)  → large train times

• High perceptual compression (i.e. high f) → limits overall sample quality

Training

Evaluated on the ImageNet dataset

• Optimal compression tradeoff: LDM-{4-16}



Experiments – Perceptual Compression Tradeoffs
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• Low perceptual compression (i.e. low f) → lower sample throughput

• High perceptual compression (i.e. high f) → limits overall sample quality, higher sample throughput

Sampling

Different markers indicate {10,20,50,100,200} sampling steps using DDIM from right to left

CelebA-HQ dataset ImageNet dataset

• Optimal compression rate: LDM-{4-16} (left) and LDM-{4-8} (right)



Experiments – Effects of regularization
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KL-Regularization vs. VQ-Regularization

• Better reconstruction capabilities (KL)

• Better sample quality (KL)



Experiments – Image Generation with Latent Diffusion
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Setup

• Train unconditional models of 2562 images on CelebA-HQ, FFHQ, LSUN-Churches and – Bedrooms dataset

Evaluation metrics

1. sample quality (FID score)

2. coverage of data manifold (Precision and Recall)

Image credit: Rombach, et.al. (2022)



Experiments – Conditional Latent Diffusion
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Class-conditional ImageNet

• Using downsampling factor f=4

Image credit: Rombach, et.al. (2022)



Experiments – Conditional Latent Diffusion
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Transformer Encoders for LDMs

• Text-to-image modeling

• 1.45B parameter KL-regularized LDM 

conditioned on language prompts

• BERT-tokenizer

• Domain specific encoder as a transformer

• MS-COCO validation set



Experiments – Conditional Latent Diffusion
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Convolutional Sampling Beyond 2562

• Concatenate spatially aligned conditioning

information to the input of 𝜖𝜃

• LDMs can serve as a general purpose image-to-

image translation model

• Useful for semantic synthesis, super-resolution 

and image inpainting

Image credit: Rombach, et.al. (2022)



Experiments – Conditional Latent Diffusion
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Super-Resolution with Latent Diffusion (LDM-SR)

• Condition on low-resolution images via concatenation, i.e. 

𝜏𝜃 is the identity function

• Fix the image degradation to a bicubic interpolation with 4x 

downsampling

• Autoencoding model pretrained on OpenImages (VQ-reg.)

Image credit: Rombach, et.al. (2022)



Experiments – Conditional Latent Diffusion
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Image Inpainting with LDMs

• Latent diffusion models improves sample throughput

and sample quality for image inpainting tasks

Image credit: Rombach, et.al. (2022)



Related work
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Generative Models for image synthesis

• Generative Adversarial Networks (GANs)

+ efficient sampling of high-dimensional images and good perceptual quality

- difficult to optimize and doesn’t capture full data distribution (mode-collapse)

• Variational autoencoders (VAEs)

+ efficient synthesis of images

- worse sample quality than GANs

• Autoregressive models (ARM)

+ strong performance in density estimation

- computationally demanding architecture and sequential sampling process



Assessment of paper and model
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Pros

• Ground-breaking paper in the field of image synthesis

• Offers a method for powerful high-resolution image generation using fewer computational resources

• Applications in a diverse range of settings (cross-attention and conditioning mechanisms)

• Text-to-image generation

• Image inpainting

• Image super-resolution

Cons

• Some segments are explained very briefly with few details regarding implementation

• Slower sampling speed compared to GANs

• Limited performance in cases where fine-grained accuracy in pixel-space is crucial (e.g. superresolution)



Thanks for listening to my presentation!

Feel free to ask any questions
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