MLP-Mixer: An all-MLP Architecture for Vision

Presented by Hector Maeso Garcia

Wednesday, 8th May

Introduction

• Released by Google Brain in 2021

 Authored by: Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

• Propose an architecture for computer vision based in **Multi-Layer Perceptrons**

- 1. Motivation
- 2. Convolution and Attention
- 3. MLP Mixer Architecture
- 4. Experiments and results
- 5. Conclusion
- 6. Personal opinion

"...while convolutions and attention are both sufficient for good performance, neither of them are necessary."

"We hope that these results spark further research beyond the realms of well established CNNs and Transformers."

Review on Convolution

- Convolutions are linear, local, shift invariant transformations.
- Convolution with channels: Kernel shape is

 $k \times k \times C_{\text{in}} \times C_{\text{out}}$

• **Separable** convolutions: *C* different $k \times k$ Kernels, with

$$C_{\text{in}} = C_{\text{out}} := C$$

Review on Self-Attention

• Attention Is All You Need, Vaswani et. al.

The Vision Transformer

- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, <u>Dositovsky et al</u>.
- Proposed in 2021 by Google Brain research.
- Divide input image into patches and map them into tokens.
 Shared linear projection + positional embeddings.

MLP-Mixer Model

- Divide input image into S patches of size P x P.
- Linear projection of each patch into a token with C channels.
- No positional embeddings.
- Input and output shape S x C, with S the number of patches.

Mixer Layer

$$\mathbf{U}_{*,i} = \mathbf{X}_{*,i} + \mathbf{W}_2 \,\sigma \big(\mathbf{W}_1 \,\text{LayerNorm}(\mathbf{X})_{*,i} \big)$$

for $i = 1 \dots C$

$$\mathbf{Y}_{j,*} = \mathbf{U}_{j,*} + \mathbf{W}_4 \sigma \big(\mathbf{W}_3 \operatorname{LayerNorm}(\mathbf{U})_{j,*} \big)$$

for $j = 1 \dots S$.

Channel mixing (MLP 2):

communication between different channels

operate on each **patch** independently shared across all rows (**patches**) mix features at a given spatial location

Token mixing (MLP 1):

communication between different patches/tokens

operate on each **channel** independently shared across all columns (**channels**) mix features between different spatial locations

Mixer Layer is a special case of Convolutional block

Channel mixing (MLP 2):

It is a 1x1 convolution

Token mixing (MLP 1):

Separable convolutions with **parameter sharing** and full receptive field

.

Comparison to CNNs and Vision Transformers

	Mix features locally	Mix features across different locations
MLP-Mixer	Channel mixing	Token mixing
CNNs	NxN convolutions	NxN convolutions, N>1 Pooling Dilated convolutions Receptive field
Attention-based models	Keys, queries and values	Attention scores, Output

Comparison to CNNs and Vision Transformers

	Model Size as a function of input size	Input vs output
MLP-Mixer	Linear	
CNNs	-	
Attention-based models	Quadratic	

Experiments

Metrics

Accuracy on downstream ۲ tasks (classification)

inea

Concat

Attention

Κ

V

Test time throughput •

Dataset	# Images	# Classes	
ILSVRC2012	1.3M	1k	
CIFAR10/100	50k	10/100 (Dxford-IIIT Pets
Oxford-IIIT Pets	3.7k	36	-
Oxford Flowers-102	2k	102	
VTAB-1k	19 x 1k	-	

Dataset	# Images	# Classes
ImageNet	1M	1000
ImageNet-21k	14M	21k
JFT-300M	300M	18k

Data Augmentation + Regularization

- -RandAugment
- -Mixup
- -Dropout
- -Stochastic depth

Fine-tuning

1. Fine tune at higher ressolution than pre-training.

 $\mathbf{W}_1 \in \mathbb{R}^{D_S \times S}$

2. Keep same patch size P, larger number of patches S

$$\mathbf{W}_1' \in \mathbb{R}^{(K^2 \cdot D_S) \times (K^2 \cdot S)}$$

Models

Convolutional architectures

Big Transfer (BiT) NFNets MPL ALIGN Attention-based architectures

Vision Transformer (ViT)
HaloNets

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days
	Pre-tr	rained on	ImageNe	et-21k (public	2)	
 HaloNet 	85.8				120	0.10k
 Mixer-L/16 	84.15	87.86	93.91	74.95	105	0.41k
• ViT-L/16	85.30	88.62	94.39	72.72	32	0.18k
• BiT-R152x4	85.39	_	94.04	70.64	26	0.94k
	Pre-tr	ained on	JFT-3001	M (proprietar	y)	
• NFNet-F4+	89.2				46	1.86k
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k
• BiT-R152x4	87.54	90.54	95.33	76.29	26	9.90k
• ViT-H/14	88.55	90.72	95.97	77.63	15	2.30k

Role of model size

Role of pre-training dataset size

Mixer model is competitive with state of the art models in terms of the tradeoff between accuracy and computational costs.

Both for computer vision and other realms, it is worth exploring architectures beyond CNNs and attention-based networks.

Related work:

Pay Attention to MLPs, Liu et al.

TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting, Chen et al. Mixer is more than just a model, Ji et al.

Multi-Scale MLP-Mixer for image classification, Zhang et al.

pNLP-Mixer: an Efficient all-MLP Architecture for Language, Fusco et al.

Challenge existing neural network architectures.

Model very well described.

Extensive comparison with CNNs and Attention-based networks.

Discuss things that didn't work.

Experiments not very clear, for instance regularization.

Propose to move away from convolutions and self-attention but publish Vision Transformer one week earlier.

Parameter sharing for token mixer is only backed by empirical results.

Additional content

Invariance to input permutations

--- original --- global shuffling --- patch + pixel shuffling

Skip connections, batch normalization.

Depth-wise convolutions.

Share parameters in depth-wise convolutions for NLP.

Augment CNNs with non-local operations.

Convert image to sequence of patches and embed them.

Fully connected network, data augmentation, pre-training with autoencoder.

Fully connected network with custom optimization and regularization.

Tables

	Image size	Pre-Train Epochs	ImNet top-1	ReaL top-1	Avg. 5 top-1	Throughput (img/sec/core)	TPUv3 core-days
	Pre-tr	ained on Ima	geNet (wi	ith extra r	egulariz	ation)	
• Mixer-B/16	224	300	76.44	82.36	88.33	1384	0.01k ^(‡)
● ViT-B/16 (☎)	224	300	79.67	84.97	90.79	861	$0.02k^{(\ddagger)}$
• Mixer-L/16	224	300	71.76	77.08	87.25	419	$0.04k^{(\ddagger)}$
• ViT-L/16 (🕿)	224	300	76.11	80.93	89.66	280	$0.05k^{(\ddagger)}$
	Pre-train	ned on Image	Net-21k (with extr	a regular	ization)	
• Mixer-B/16	224	300	80.64	85.80	92.50	1384	0.15k ^(‡)
● ViT-B/16 (☎)	224	300	84.59	88.93	94.16	861	0.18k ^(‡)
• Mixer-L/16	224	300	82.89	87.54	93.63	419	$0.41k^{(\ddagger)}$
• ViT-L/16 (🕿)	224	300	84.46	88.35	94.49	280	$0.55k^{(\ddagger)}$
• Mixer-L/16	448	300	83.91	87.75	93.86	105	0.41k ^(‡)
		Pre-tr	ained on .	JFT-300N	1		
• Mixer-S/32	224	5	68.70	75.83	87.13	11489	0.01k
 Mixer-B/32 	224	7	75.53	81.94	90.99	4208	0.05k
 Mixer-S/16 	224	5	73.83	80.60	89.50	3994	0.03k
 BiT-R50x1 	224	7	73.69	81.92		2159	0.08k
 Mixer-B/16 	224	7	80.00	85.56	92.60	1384	0.08k
 Mixer-L/32 	224	7	80.67	85.62	93.24	1314	0.12k
 BiT-R152x1 	224	7	79.12	86.12		932	0.14k
 BiT-R50x2 	224	7	78.92	86.06		890	0.14k
 BiT-R152x2 	224	14	83.34	88.90		356	0.58k
Mixer-L/16	224	7	84.05	88.14	94.51	419	0.23k
Mixer-L/16	224	14	84.82	88.48	94.77	419	0.45k
 ViT-L/16 	224	14	85.63	89.16	95.21	280	0.65k
• Mixer-H/14	224	14	86.32	89.14	95.49	194	1.01k
 BiT-R200x3 	224	14	84.73	89.58		141	1.78k
Mixer-L/16	448	14	86.78	89.72	95.13	105	0.45k
• ViT-H/14	224	14	86.65	89.56	95.57	87	2.30k
• ViT-L/16 [14]	512	14	87.76	90.54	95.63	32	0.65k

Specification	S/32	S/16	B/32	B/16	L/32	L/16	H/14
Number of layers	8	8	12	12	24	24	32
Patch resolution $P \times P$	32×32	16×16	32×32	16×16	32×32	16×16	14×14
Hidden size C	512	512	768	768	1024	1024	1280
Sequence length S	49	196	49	196	49	196	256
MLP dimension D_C	2048	2048	3072	3072	4096	4096	5120
MLP dimension D_S	256	256	384	384	512	512	640
Parameters (M)	19	18	60	59	206	207	431