

Advanced Topics in Machine Learning and Data Science Tianyi Liu

A Style-Based Generator Architecture for Generative Adversarial Networks Tero Karras Samuli Laine Timo Aila

Agenda

- 1. Background
- 2. Motivation
- 3. Architecture & Properties
- 4. Disentanglement studies
- 5. Results
- 6. Conclusion
- 7. Q & A

Background – Generative Adversarial Networks (GAN)

Source: https://developers.google.com/machine-learning/gan/gan_structure

- Generator: Learns to map from the latent space, to the real image space
- Discriminator: Estimates the probability that a sample comes from the training data rather than the generator

Background – Image Style Transfer

Style image

Content image

Synthesized image

Source: Image Style Transfer Using Convolutional Neural Networks

- Image = semantic object + style
- Transferring the style from one image onto another

Background – Fréchet Inception Distance (FID)

- A metric used to assess the quality of images created by a generative model
- Compare the distribution of generated images with the distribution of real images used to train the generator
- Features are generated from convolutional neural networks: Compare the mean and standard deviation of one of the deeper layers (assume Gaussian distribution)

Source: GANs trained by a two time-scale update rule converge to a local Nash equilibrium

Motivation

- The generators continue to operate as black boxes.
- The properties of the latent space are poorly understood.
- The commonly demonstrated latent space interpolations provide no quantitative way to compare different generators against each other.

Solution:

A style-based generator architecture that leads to

- an automatically learned, unsupervised separation of high-level attributes and stochastic variation in the generated images
- better interpolation properties
- better disentanglement of the latent factors of variation

- Progressive growing GAN training method (Bi-linear sampling)
- Traditional generator
 - Provide the latent code to the generator through the first layer of a feedforward network
 - Style-based generator
 - Map the latent input to an intermediate latent space
 W uisng an 8-layer MLP
 - A: Apply learned affine transformations that specialize w to styles $y = (y_s; y_b)$ which control adaptive instance normalization (AdaIN) operations after each convolution layer

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i},$$

- B: Apply learned per-channel scaling factors to the noise input
- Improvement: Remove the traditional input layer and start the image synthesis from a learned 4 × 4 × 512 constant tensor

Mixing regularization

 When generating an image, switch from one latent code to another at a randomly selected point in the synthesis network.

- Mixing regularization
 - Coarse spatial resolutions (4² 8²) bring high-level aspects such as pose, general hair style, face shape, and eyeglasses from B.
 - Middle resolutions (16² 32²) bring smaller scale facial features, hair style, eyes open/closed from B.
 - High resolutions (64² 1024²) bring mainly the color scheme and microstructure from B.

(a) Generated image (b) Stochastic variation (c) Standard deviation

- Stochastic variation
 - Traditional generator: Invent a way to generate spatially-varying pseudorandom numbers from earlier activations whenever they are needed
 - Style-based generator: Add per-pixel noise after each convolution

Results

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

• Datasets

- CELEBA-HQ: 30,000 high-quality celebrity images at 1024² resolution, each with 40 binary attributes annotations
- Flickr-Faces-HQ (FFHQ): 70,000 high-quality images at 1024² resolution, more variation than CELEBA-HQ in terms of age, ethnicity and image background, and also much better coverage of accessories such as eyeglasses, sunglasses, hats, etc.
- Calculate the FIDs using 50,000 images drawn randomly from the training set, and report the lowest distance encountered over the course of training

Disentanglement studies

- A latent space that consists of linear subspaces, each of which controls one factor of variation
- There is pressure for the generator to unwarp *W* so that the factors of variation become more linear: It should be easier to generate realistic images based on a disentangled representation than based on an entangled representation

Disentanglement studies

- Perceptual path length
 - Measure how drastic changes the image undergoes as we perform interpolation in the latent space
 - A less curved latent space should result in perceptually smoother transition than a highly curved latent space.

Source: https://medium.com/analytics-vidhya/from-gan-basic-to-stylegan2-680add7abe82

- Linear separability
 - Measure how well the latent-space points can be separated into two distinct sets via a linear hyperplane, so that each set corresponds to a specific binary attribute of the image
 - If a latent space is sufficiently disentangled, it should be possible to find direction vectors that consistently correspond to individual factors of variation.

Results

Mahad		Path l	Separa-	
Method		full	end	bility
B Traditional generator	Z	412.0	415.3	10.78
D Style-based generator	W	446.2	376.6	3.61
E + Add noise inputs	\mathcal{W}	200.5	160.6	3.54
+ Mixing 50%	w	231.5	182.1	3.51
F + Mixing 90%	W	234.0	195.9	3.79

Method Fl	FID	Path length		Separa-
	гШ	full	end	bility
B Traditional 0 Z	5.25	412.0	415.3	10.78
Traditional 8 \mathcal{Z}	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 Z	5.06	283.5	285.5	9.88
Style-based 1 W	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

- The intermediate latent space is perceptually more linear than the latent space.
- Style mixing appears to distort the intermediate latent space somewhat.
- Both traditional and style-based generators benefit from having a mapping network in terms of FID, separability, and path length.
- A deeper mapping network generally performs better than a shallow one.

Conclusion

- The traditional GAN generator architecture is in every way inferior to a style-based design.
- The investigations to the separation of high-level attributes and stochastic effects, as well as the linearity of the intermediate latent space will help improve the understanding and controllability of GAN synthesis.
- The average path length metric could be used as a regularizer during training, and perhaps some variant of the linear separability metric could act as one, too.

Q & A

Appendix

Perceptual path length

$$d_{\mathcal{W}} = \mathbb{E}\left[\frac{1}{\epsilon^2}d(g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t)), g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t+\epsilon)))
ight]$$

- g: Generator
- f: Mapping network
- d: Perceptual distance
- lerp: Linear interpolation

- Linear separability
 - Train auxiliary classification networks for a number of binary attributes to label the generated images
 - For each attribute, fit a linear SVM to predict the label based on the latent-space point and classify the points by this plane
 - Compute the conditional entropy H(Y|X) where X are the classes predicted by the SVM and Y are the classes determined by the pre-trained classifier
 - Final separability score: $\exp(\sum_{i} H(Y_i|X_i))$