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Background – Generative Adversarial Networks (GAN)

• Generator: Learns to map from the latent space, to the real image space

• Discriminator: Estimates the probability that a sample comes from the training data rather 
than the generator
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Source: https://developers.google.com/machine-learning/gan/gan_structure 
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Background – Image Style Transfer
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Style image Content image Synthesized image

Source: Image Style Transfer Using Convolutional Neural Networks

• Image = semantic object + style

• Transferring the style from one image onto another
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Background – Fréchet Inception Distance (FID)

• A metric used to assess the 
quality of images created by a 
generative model

• Compare the distribution of 
generated images with the 
distribution of real images used 
to train the generator

• Features are generated from 
convolutional neural networks: 
Compare the mean and standard 
deviation of one of the deeper 
layers (assume Gaussian 
distribution)
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Source: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
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Motivation
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• The generators continue to operate as black boxes. 

• The properties of the latent space are poorly understood.

• The commonly demonstrated latent space interpolations provide no quantitative way to 
compare different generators against each other.

Solution:

A style-based generator architecture that leads to 

• an automatically learned, unsupervised separation of high-level attributes and 

stochastic variation in the generated images

• better interpolation properties

• better disentanglement of the latent factors of variation



Architecture & Properties
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• Progressive growing GAN training method (Bi-linear 
sampling)

• Traditional generator
− Provide the latent code to the generator through the 

first layer of a feedforward network
 

 

− B: Apply learned per-channel scaling factors to the 
noise input

− Improvement: Remove the traditional input layer and 
start the image synthesis from a learned 4 × 4 × 512 
constant tensor



Architecture & Properties
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• Mixing regularization
− When generating an image, 

switch from one latent code to 
another at a randomly selected 
point in the synthesis network.



Architecture & Properties
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• Mixing regularization
− Coarse spatial resolutions (42 – 82) 

bring high-level aspects such as 
pose, general hair style, face 
shape, and eyeglasses from B.

− Middle resolutions (162 – 322) bring 
smaller scale facial features, hair 
style, eyes open/closed from B.

− High resolutions (642 – 10242) bring 
mainly the color scheme and 
microstructure from B.



Architecture & Properties

06.04.2022 10Advanced Topics in Machine Learning and Data Science – Tianyi Liu

• Stochastic variation
− Traditional generator: Invent a way to generate spatially-varying 

pseudorandom numbers from earlier activations whenever they are needed
− Style-based generator: Add per-pixel noise after each convolution
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• Datasets
− CELEBA-HQ: 30,000 high-quality celebrity images at 

10242 resolution, each with 40 binary attributes 
annotations

− Flickr-Faces-HQ (FFHQ): 70,000 high-quality images 
at 10242 resolution, more variation than CELEBA-HQ 
in terms of age, ethnicity and image background, and 
also much better coverage of accessories such as 
eyeglasses, sunglasses, hats, etc.

• Calculate the FIDs using 50,000 images drawn randomly 
from the training set, and report the lowest distance 
encountered over the course of training

Results



Disentanglement studies
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• Perceptual path length
− Measure how drastic changes the 

image undergoes as we perform 
interpolation in the latent space

− A less curved latent space should 
result in perceptually smoother 
transition than a highly curved 
latent space.

• Linear separability
− Measure how well the latent-space 

points can be separated into two 
distinct sets via a linear 
hyperplane, so that each set 
corresponds to a specific binary 
attribute of the image

− If a latent space is sufficiently 
disentangled, it should be possible 
to find direction vectors that 
consistently correspond to 
individual factors of variation.

Disentanglement studies

Source: https://medium.com/analytics-vidhya/from-gan-basic-to-stylegan2-680add7abe82
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• The intermediate latent space is perceptually 
more linear than the latent space.

• Style mixing appears to distort the 
intermediate latent space somewhat.

• Both traditional and style-based generators 
benefit from having a mapping network in 
terms of FID, separability, and path length.

• A deeper mapping network generally 
performs better than a shallow one.

Results
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• The traditional GAN generator architecture is in every way inferior to a style-based design. 

• The investigations to the separation of high-level attributes and stochastic effects, as well as 
the linearity of the intermediate latent space will help improve the understanding and 
controllability of GAN synthesis.

• The average path length metric could be used as a regularizer during training, and perhaps 
some variant of the linear separability metric could act as one, too. 

Conclusion



Q & A
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Appendix
• Perceptual path length

− g: Generator
− f: Mapping network
− d: Perceptual distance
− lerp: Linear interpolation

• Linear separability
− Train auxiliary classification 

networks for a number of binary 
attributes to label the generated 
images

− For each attribute, fit a linear SVM 
to predict the label based on the 
latent-space point and classify the 
points by this plane

− Compute the conditional entropy 
H(Y|X) where X are the classes 
predicted by the SVM and Y are 
the classes determined by the 
pre-trained classifier

− Final separability score: 


