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Motivating Problem

• Assumption: Generative models are robust to problems where the model is highly 
confident about a wrong result.

𝑝 𝑥, 𝑦 VS 𝑝(𝑦|𝑥)
• Purpose: anomaly detection, active learning etc.
• The calibration w.r.t. out-of-distribution data is essential for applications such as safety  



Background

1. Scope of the investigation
• Implemented three types of generative models (p 𝐗 ; 𝜃 = ∏!"#

$ 𝑝(𝑥!; 𝜃)) on pairs of 
commonly used image datasets.

• In the pair of datasets, one of them is used in training and both of them will appear in 
the test set.

• Investigate whether models will assign low confidence levels to the wrong predictions 
they give.
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Background

1. Scope of the investigation
2. Datasets used
3. Neural generative models

• Latent Variable Models: Variational Autoencoders (VAE)
• Autoregressive Models: PixelCNN
• Invertible Flow-based Generative Models: Glow



Latent Variable Models: VAE

Structure:

𝑝%|' 𝑧 𝑥 =
𝑝'|% 𝑥 𝑧 𝑝%(𝑧)

𝑝'(𝑥)

⇒ 𝑝' 𝑥 ≈
𝑝'|% 𝑥 𝑧 𝑝%(𝑧)
𝑞%|'(𝑧|𝑥)



Autoregressive Models: PixelCNN

1. Architecture: decompose the joint image distribution as a product of conditionals, where 𝑥! is a 
single pixel: 𝑝 𝑥 = ∏!"#

$! 𝑝(𝑥!|𝑥#, … , 𝑥!%#) . Every pixel depends on all the pixels above and to 
the left of it.

2. Conditional PixelCNN: given a high-level image description represented as a latent vector h, 
we seek to model the conditional distribution 𝑝(𝑥|𝒉) of images suiting this description. 
Formally, 𝑝(𝑥|𝒉) = ∏!"#

$! 𝑝(𝑥!|𝑥#, … , 𝑥!%#, 𝒉)

3. PixelCNN Auto-Encoders: consists of two parts:
• An encoder that takes an input image x and maps it to a low-dimensional representation h
• A decoder that tries to reconstruct the original image

Conditional Image Generation with PixelCNN Decoders by van den Oord et al.



From: https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763



Invertible Flow-based Generative Models: Glow

A flow-based generative model is constructed by a sequence of invertible transformations. The 
generative process is defined as 𝑧~𝑝(𝑧) and 𝑥 = 𝑔 𝑧 , i.e. 𝑧 = 𝑓 𝑥 = 𝑔%# 𝑥 . 

Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma & Dhariwal



• This architecture has a depth of 
flow K, and number of levels L.

• An Affine Coupling Layer!A 
powerful reversible 
transformation where the forward 
function, the reverse function and 
the log- determinant are 
computationally efficient.

Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma & Dhariwal



Background

1. Scope of the investigation
2. Datasets used
3. Neural generative models
4. Change of variables



Change of variables

And inversely, 𝑝% 𝑧 = 𝑝' 𝑓(# 𝑧 det 𝐷𝑓(# 𝑧

Where det 𝐷𝑓 𝑥 and det 𝐷𝑓(# 𝑧 are known as the volume elements as they adjust the 
volume change under the alternate measure.



Change of variables



Change of variables

Specifically, ACL takes the form: 
𝑓)*+ 𝑥; 𝜙

= [exp 𝑠 𝑥,:; 𝜙. ;𝑥:, + 𝑡 𝑥,:; 𝜙/ , 𝑥,:]

One particular form of 𝑓 is the bijection from affine coupling layers (ACL), which transform 𝑥 by way of 
translation and scaling operations. 

Invertible generative models for inverse problems: mitigating representation error and dataset bias 
by Muhammad Asim 



Change of variables

So, the determinant equals to the multiplication of the diagonal inputs.

With ACL, we have log !""
!#

= ∑$%&' 𝑠$(𝑥&:; 𝜙)).

This class of transform is known as non-volume preserving (NVP) since the volume element can vary 
with each input 𝑥. 

A transformation 𝑓 can also be defined with just translation operations, i.e. 𝑓*+, 𝑥; 𝜙 = [𝑡 𝑥&:; 𝜙- , 𝑥&:] and 
this transformation is volume preserving (VP).



Observations

Goal: test deep generative models’ ability to quantify when an input comes from a different 
distribution than that of the training set.

Criteria for comparison: bits-per-dimension (BPD, lower value the better) and log-likelihood 
(higher value the better)

𝐵𝑃𝐷 𝑥 = − 012 3 4
5 × 7 ×8 × 012 9

for an image of resolution I × J and K channels. 

Expectation: models assign a lower probability to the out-of-distribution data because they are 
not trained on it.



For Glow





For VAE



For PixelCNN



Further into Invertible Flow-based Models

• Allow for better experimental control
- Can compute exact marginal likelihoods
- The transforms used in flow-based models have Jacobian constraints that simplify the 

analysis
• Flow of investigation
- Separate the contributions to the likelihood of each term in the change-of-variable formula
- Volume element is the primary cause?
- Constant-volume flows?



Decomposing the change-of-variables objective

• Change-of-variable objective: 
𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥; log 𝐿 𝒟|𝜃

• Plot log p z and log <=
<4

terms for NVP-Glow



Is the volume the culprit?

• Rewarding the maximisation of the Jacobian determinant in the objective encourages the 
model to increase its sensitivity to perturbations in 𝒳

• Contradicts a long history of derivative-based regularisation that rewards the model for 
decreasing its sensitivity to input directions (Stability)

• Then trained Glow with constant-volume transformations. Modify the affine layers to use only 
translation operations, but keep other components of the flow. 





Second order analysis

• Analyse the phenomenon by way of linearizing the difference in expected log-likelihoods
• Two distributions: the training distribution 𝑥 ~ 𝑝∗ and some dissimilar distribution 𝑥 ~ 𝑞, both 

with support on 𝒳.
• For a generative model 𝑝(𝑥; 𝜃), the problem can be formulated as: 

𝔼> log 𝑝(𝑥; 𝜃) − 𝔼3∗ log 𝑝 𝑥; 𝜃 > 0

• Perform a second order expansion of the log-likelihood around an interior point 𝑥?.

log 𝑝 𝑥; 𝜃 ≈ log 𝑝 𝑥?; 𝜃 + ∇4" log 𝑝 𝑥?; 𝜃
@ 𝑥 − 𝑥? +

1
2
𝑇𝑟 ∇4"

9 log 𝑝 𝑥?; 𝜃 𝑥 − 𝑥? 𝑥 − 𝑥? @



• Assumption: 
- 𝔼> log 𝑝(𝑥?; 𝜃) = 𝔼3∗ log 𝑝 𝑥?; 𝜃
- 𝔼> 𝑥 = 𝔼3∗ 𝑥 = 𝑥?
- The generative model is flow-based and volume-preserving

• 0 < 𝔼> log 𝑝(𝑥; 𝜃) − 𝔼3∗ log 𝑝 𝑥; 𝜃

≈
1
2
Tr {∇4"

9 log 𝑝(𝑥?; 𝜃)(Σ> − Σ3∗)} =
1
2
𝑇𝑟 ∇4"

9 log 𝑝A 𝑓 𝑥?; 𝜙 + ∇4"
9 log

𝜕𝑓B
𝜕𝑥?

(Σ> − Σ3∗)

=
1
2
𝑇𝑟 ∇4"

9 log 𝑝A 𝑓 𝑥?; 𝜙 (Σ> − Σ3∗)

Would be negative for any log-concave density distribution (eg. Normal, Laplace)



The degree of differences in likelihoods agrees with the differences in 
variances



Conclusion

• Have shown that comparing the likelihoods of deep generative models alone cannot identify the training 
set or inputs like it

• Caution against using the density estimates from deep generative models to identify inputs outside the 
training distribution

• Need for further work on generative models and their evaluation

• Deep generative models can detect out-of-distribution inputs when 
- Using alternative metrics: computing the Watanabe- Akaike information criterion 
- Outlier Exposure



Q & A



Related Work

• Solutions:
- Mitigate the CIFAR-10 vs SVHN issue by exposing the model to outliers during training: Dan 

Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep Anomaly Detection with Outlier 
Exposure. In International Conference on Learning Representations (ICLR), 2019. 

- Propose training an ensemble of generative models with an adversarial objective and testing for out-
of-training-distribution inputs by computing the Watanabe- Akaike information criterion via the 
ensemble: Hyunsun Choi and Eric Jang. Generative Ensembles for Robust Anomaly Detection. 
ArXiv e-Print arXiv:1810.01392, 2018. 

- Propose a likelihood ratio method: Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., DePristo, M. 
A., Dillon, J. V., and Lakshmi- narayanan, B. Likelihood ratios for out-of-distribution detection. arXiv
preprint arXiv:1906.02845, 2019. 

• Confirmation:
- Hyunsun Choi and Eric Jang. Generative Ensembles for Robust Anomaly Detection. ArXiv e-Print 

arXiv:1810.01392, 2018. 


