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What is Contrastive Learning?
● Deep learning technique for supervised or self-supervised 

low-dimensional representation learning.

● Main components:

○ Positive and Negative samples

○ Loss objective

○ Data augmentation

Image from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple 
Framework for Contrastive Learning of Visual Representations", ICML 2020
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● Goal:

○ Clusters of similar points are pulled 
together in the low-dimensional 
representation. Dissimilar points are 
pushed apart.

○ Invariance to certain transformations.



Positive & Negative samples

Image and formula from: R. Hadsell, S. Chopra and Y. LeCun, "Dimensionality Reduction by Learning an Invariant Mapping", CVPR 2006

● Assumption
○ For each training sample there is a set of other training 

samples that are are deemed “similar”.

○ This set can be computed via prior knowledge, such as 
invariance to image distortions.
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● Objective

○ A meaningful high to low dimensional mapping maps 
similar input vectors to nearby points in the feature 
space and dissimilar input vectors to distant points.



Positive samples via data augmentations
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Experiment 1
Similar points: Top 5 NN in image space

Images taken from: R. Hadsell, S. Chopra and Y. LeCun, "Dimensionality Reduction by Learning an Invariant Mapping", CVPR 2006

Experiment 2
Dataset augmentation: horizontally shifted images

Similar points: Top 5 NN in image space

Experiment 3
Dataset augmentation: horizontally shifted images
Similar points: Top 5 NN in image space + all of the 

sample’s augmentations



Triplet loss (supervised)
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anchor

positive sample negative sample

The original images are taken from ILSVRC2012

● How can we now define the negative 
samples?

● The triplet loss provides an 
extension to the previous idea by 
selecting a positive sample and a 
negative sample for each anchor. 



Triplet loss (supervised)
● Main idea

○ For each sample, we want to construct a triplet by selecting a positive sample (from the same class) 
and a negative sample (from a different class).

● Loss formulation
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● Problems

○ We cannot afford to iterate through all possible pairs of positives and negatives due to computational 
costs.

○ Even the optimized hard positive and negative mining algorithms are computationally expensive! 



Hard positive & negative mining

● For a given anchor, the hard positives and hard negatives are defined in the following way:

○ Hard positives: samples that are supposed to be similar to the anchor, but the similarity value between their 
learned representations is low.

○ Hard negatives: samples that are supposed to be very dissimilar, but the similarity value between their 
learned representations is high.
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● Some hard positive and negative mining ideas:

○ Batch mining

○ Online Hard Example Mining (OHEM)

○ Distance Weighted Sampling



N-pairs loss (supervised)
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Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6
Sample 2N-1 Sample 2N

The original images are taken from ILSVRC2012



N-pairs loss (supervised)
● Main idea

○ Extending the triplet loss to be able to use an arbitrarily large number of negatives.

○ Each batch contains N pairs of samples, where each pair contains 2 samples from the same class.

○ Use the remaining (N - 1) pairs as negative samples.

● Loss formulation
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● Problems

○ Makes use of only one positive sample.

○ No data augmentations.



SimCLR loss (unsupervised)
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Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6
Sample 2N-1 Sample 2N

The original images are taken from ILSVRC2012



SimCLR (unsupervised)

● Very similar objective to N-pairs loss

○ Employs and highlights the importance of using data augmentations for the positive samples.

○ Adds a temperature parameter to the loss function.
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● Contrastive learning strongly benefits from larger training batch sizes

○ Empirical proof that no negative hard mining is needed.



SimCLR - unfortunate scenarios
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Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Sample 2N-1 Sample 2N

The original images are taken from ILSVRC2012



Supervised Contrastive Learning
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Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Sample 2N-1 Sample 2N

The original images are taken from ILSVRC2012



Supervised Contrastive Learning
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Image from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Paper contributions

1. Performance boost over the Cross Entropy loss for downstream classification tasks.

2. Extending contrastive loss: multiple positives per anchor.

3. Analytical proof that the gradient of the loss function performs implicit hard negative mining.

4. Robustness to image corruption

5. Less sensitive to hyperparameter changes compared to the Cross Entropy loss.

16



Contrastive Loss vs Cross Entropy

● Although widely used in practice, the Cross Entropy loss has a few shortcomings, such as:

○ lack of robustness to noisy labels

○ the possibility of poor margins, which leads to a reduced generalization performance
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● The authors argue that the Contrastive Loss yields better results and is more stable to:

○ image corruptions

○ hyperparameter changes (types of augmentations and optimizers, learning rate values)



Network Architecture
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Image from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020

● The Contrastive Learning architecture puts 
more emphasis on learning better 
discriminative features between samples from 
different classes.

● The classification head does not propagate 
gradients back to the encoder.



Network Architecture - why an extra projection 
layer?
The SimCLR authors conjecture that:

● Using the representation before the 
projection is due to loss of information 
induced by the contrastive loss.

● The contrastive representation is trained 
to be invariant to data transformation. 
Thus, it can erase some of the information 
that could be useful for the downstream 
tasks, such as image color and object 
orientation.

19Figure from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020



Network Architecture - why an extra projection 
layer?

20Tables from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020



Paper contributions

1. Performance boost over the Cross Entropy loss for downstream classification tasks.

2. Extending contrastive loss: multiple positives per anchor.

3. Analytical proof that the gradient of the loss function performs implicit hard negative mining.

4. Robustness to image corruption

5. Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Loss objective
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● Generalization to an arbitrarily large number of positives leads to a choice between 
multiple objective functions.

● The authors propose the “in” and “out” versions (which will be compared later).



Loss objective: desirable properties
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● Generalization to an arbitrarily large number of positives

a. All positives in a multiview batch contribute to the numerator.

b. For randomly generated batches with size much greater than the number of 
classes, we will have many positive terms.

c. The supervised contrastive losses encourage the encoder to give closely aligned 
representations to all positive samples in a batch.



Loss objective: desirable properties
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● The contrastive loss is more powerful when we have more negatives

a. The ability to discriminate between signal (positives) and noise (negatives) 
increases.

Figure from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020



Paper contributions

1. Performance boost over the Cross Entropy loss for downstream classification tasks.

2. Extending contrastive loss: multiple positives per anchor.

3. Analytical proof that the gradient of the loss function performs implicit hard negative 
mining.

4. Robustness to image corruption

5. Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Loss objective: desirable properties
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● Eliminates the need to perform explicit hard positive & negative mining.

○ Unlike most of the previous methods, we do not have the extra computational cost 
of searching for hard positive and negative samples.

○ WHY? -> This is due to the gradient structure of the supervised contrastive loss 
function:

■ Weak Positive/Negative samples  —>  small gradient contribution

■ Hard Positive/Negative samples —> big gradient contribution



Loss objective: desirable properties
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● Eliminates the need to perform explicit hard positive & negative mining.

a. The ability to discriminate between signal (positives) and noise (negatives) 
increases.



Temperature parameter
● Small vs Large temperature value:

○ Large value: makes the contribution of smaller amplitude gradients more important (smoothens the 
gradient contribution)

○ Small value: equivalent to optimizing for hard positives/negatives.

○ What works best?    —>   Authors show that a value of 0.1 (small) yields the best results.

28
Formula taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Difference between the (in) and (out) losses

● When the normalization factor is inside the log(), it only contributes as an additive 
constant in the gradient of the loss.

● When it is outside of the log(), it serves to remove the bias present in the positive 
samples in the batch.
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Formulas taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Results - classification accuracy
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020

● All methods use the same backbone (ResNet-50). The authors tuned the hyperparameters for 
each method separately and used the best results for each.

● Main takeaway: the Supervised Contrastive Learning method achieves better results than both 
Cross-Entropy and the previous best Contrastive Learning approach.



Results - augmentation experiments
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020

● A more capable (deeper) encoder will be able to profit from more complex augmentation 
processes.

○ Stacked RandAugment performs worse than AutoAugment on ResNet-50.



Results - number of positive samples
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020

● Also offers a direct comparison with the 
self-supervised approach.

● In a similar fashion with the increase of negative 
examples, the performance gain obtained by using 
multiple positive samples ends up reaching a plateau 
region.



Results - batch size and temperature
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Figures from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Paper contributions

1. Performance boost over the Cross Entropy loss for downstream classification tasks.

2. Extending contrastive loss: multiple positives per anchor.

3. Analytical proof that the gradient of the loss function performs implicit hard negative mining.

4. Robustness to image corruption

5. Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Results - robustness to corruption
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Paper contributions

1. Performance boost over the Cross Entropy loss for downstream classification tasks.

2. Extending contrastive loss: multiple positives per anchor.

3. Analytical proof that the gradient of the loss function performs implicit hard negative mining.

4. Robustness to image corruption

5. Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Results - hyperparameter stability
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Figure from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020



Results - Transfer Learning
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020

● We observe that all of the loss objectives obtain very similar results.

● The authors state that when it comes to transfer learning, the capability of the encoder seems 
to play a much more important role than the loss objective. However, they decided to leave the 
connection between the loss objective and the transfer learning capabilities for future work. 



Future related work
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● X. Chen, Y. Liu, Y. Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction from 
Monocular Image”

● H. Cha, J. Lee, J. Shin “Co2L: Contrastive Continual Learning”

● H. Wang, Y. Zhu, et al. “MaX-DeepLab: End-to-End Panoptic Segmentation with Mask 
Transformers”

● D. Dwibedi, Y. Aytar, et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive 
Learning of Visual Representations”



Contrastive Continual Learning

● Paper: H. Cha, J. Lee, J. Shin “Co2L: Contrastive Continual Learning”

● Task-Incremental-Learning
○ Example: first distribution: apples vs oranges; second distribution: cats vs dogs
○ In the end, we want the model to be able to perform both types of classifications.

● Domain-Incremental-Learning
○ Example: first distribution: letters written with Font#1; second distribution: letters written with Font#2

● Class-Incremental-Learning
○ Example: first distribution: apples vs oranges; second distribution: cats vs dogs
○ In the end, we want the model to be able to distinguish between all classes!
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The power of positive samples
● Paper: X. Chen, Y. Liu, Y. Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction 

from Monocular Image”
● The positive samples can be used to create consistency between different views of the same 

object.
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Figure from: X. Chen, Y. Liu, Y. Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image”



Personal conclusions
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● Positive:

○ Very well structured

○ Comes with a comprehensive 
supplemental material

○ Provides analytical proofs to support 
its claims.

○ Comes with a lot of very detailed 
experiments.

● Negative:

○ The “monologue” of the paper is too 
focused on the Cross-Entropy 
comparison.

○ Does not show experiments with 
“reduced training size"



Q&A Section
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Difference between the (in) and (out) losses
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Formulas taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurIPS 2020
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