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What is Contrastive Learning?

e Deep learning technique for supervised or self-supervised
low-dimensional representation learning.

e Main components:

o  Positive and Negative samples

o  Loss objective

o Data augmentation

o  Clusters of similar points are pulled

together in the low-dimensional
. e e . . Image from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple
representatlon- Dissimilar points are Framework for Contrastive Learning of Visual Representations”, ICML 2020

pushed apart.

o Invariance to certain transformations.



Positive & Negative samples
e Assumption

o  For each training sample there is a set of other training
samples that are are deemed “similar”.

o  This set can be computed via prior knowledge, such as
invariance to image distortions.

e Objective
o A meaningful high to low dimensional mapping maps

similar input vectors to nearby points in the feature

space and dissimilar input vectors to distant points.

LW,Y, X1, X3) =

(1-— Y)%(DW)Q + (Y)%{mam(Q m — D)}

Image and formula from: R. Hadsell, S. Chopra and Y. LeCun, "Dimensionality Reduction by Learning an Invariant Mapping", CVPR 2006



Positive samples via data augmentations

Experiment 1 Experiment 2 Experiment 3
Similar points: Top 5 NN in image space Dataset augmentation: horizontally shifted images Dataset augmentation: horizontally shifted images
Similar points: Top 5 NN in image space Similar points: Top 5 NN in image space + all of the

sample’s augmentations

Images taken from: R. Hadsell, S. Chopra and Y. LeCun, "Dimensionality Reduction by Learning an Invariant Mapping", CVPR 2006



Triplet loss (supervised)

e How can we now define the negative
samples?

e The triplet loss provides an
extension to the previous idea by
. .. anchor
selecting a positive sample and a
negative sample for each anchor.

negative sample

The original images are taken from ILSVRC2012



Triplet loss (supervised)

e Mainidea

o  For each sample, we want to construct a triplet by selecting a positive sample (From the same class)
and a negative sample (from a different class).

e Loss Formulation

Etr'iplet = Zfil Zpep(i) max (0* ‘ Zi — Zp“Q _ Hzt - Z'ILHQ + (1)

neN (i)
e Problems

o  We cannot afford to iterate through all possible pairs of positives and negatives due to computational
costs.

o  Even the optimized hard positive and negative mining algorithms are computationally expensive!



Hard positive & negative mining

e For agiven anchor, the hard positives and hard negatives are defined in the following way:

samples that are supposed to be similar to the anchor, but the similarity value between their
learned representations is low.

o Hard negatives: samples that are supposed to be very dissimilar, but the similarity value between their
learned representations is high.
e Some hard positive and negative mining ideas:
o  Batch mining
o  Online Hard Example Mining (OHEM)

o Distance Weighted Sampling



N-pairs loss (supervised) -~ ~<
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The original images are taken from ILSVRC2012



N-pairs loss (supervised)

e Mainidea

o  Extending the triplet loss to be able to use an arbitrarily large number of negatives.

o  Each batch contains N pairs of samples, where each pair contains 2 samples from the same class.

o  Use the remaining (N - 1) pairs as negative samples.

e Loss formulation

n-pairs exp z‘ zk('i))
LFP = log

Z o exp (2i * Za)
aéA( )
e Problems

o Makes use of only one positive sample.

o No data augmentations.
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The original images are taken from ILSVRC2012
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SimCLR (unsupervised)

e Very similar objective to N-pairs loss
o  Employs and highlights the importance of using data augmentations for the positive samples.
o  Adds atemperature parameter to the loss function.

ZiZ(i)
exp (—)
LSimCLR = — E log -

z,--z(,)

icl Z(zEA(i) €xXp ( 1

® Contrastive learning strongly benefits from larger training batch sizes

o  Empirical proof that no negative hard mining is needed.
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SimCLR - unfortunate scen/a,rios”

The original images are taken from ILSVRC2012
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Supervised Contrastive Learring — ~-

R .

Sample 3
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The original images are taken from ILSVRC2012

Sample 4
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Supervised Contrastive Learning

Anchor Negatives Anchor Negatives
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Self Supervised Contrastive Supervised Contrastive

Image from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A,; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Paper contributions

1.

Performance boost over the Cross Entropy loss for downstream classification tasks.

Extending contrastive loss: multiple positives per anchor.

Analytical proof that the gradient of the loss function performs implicit hard negative mining.

Robustness to image corruption

Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Contrastive Loss vs Cross Entropy

e Although widely used in practice, has a few shortcomings, such as:
o lack of robustness to noisy labels

o  the possibility of poor margins, which leads to a reduced generalization performance

e The authors argue that the Contrastive Loss yields better results and is more stable to:
o image corruptions

o hyperparameter changes (types of augmentations and optimizers, learning rate values)
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Network Architecture

The Contrastive Learning architecture puts
more emphasis on learning better
discriminative features between samples from
different classes.

The classification head does not propagate
gradients back to the encoder.

Image from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A,;
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(a) Supervised Cross Entropy (b) Self Supervised Contrastive

Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020

18



Network Architecture - why an extra projection
layer?
The SimCLR authors conjecture that:

e Using the representation before the
projection is due to loss of information
induced by the contrastive loss.

e The contrastive representation is trained
to be invariant to data transformation.
Thus, it can erase some of the information
that could be useful for the downstream
tasks, such as image color and object

orientation. (a) h (b) z = g(h)

Figure from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
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Network Architecture - why an extra projection

layer?

y Representation
What to predict? Random guess
i i h  g(h)
Color vs grayscale 80 99.3 97.4
Rotation 25 67.6 25.6
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3

70
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Projection
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B Non-linear
== None
||

ol e
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Pro;ectlon output dlmenS|onaI|ty

Tables from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 20



Paper contributions

1.

Performance boost over the Cross Entropy loss For downstream classification tasks.

Extending contrastive loss: multiple positives per anchor.

Analytical proof that the gradient of the loss function performs implicit hard negative mining.

Robustness to image corruption

Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Loss objective

e Generalization to an arbitrarily large number of positives leads to a choice between
multiple objective functions.

e The authors propose the “in” and “out” versions (which will be compared later).

sup sup | eXp (zi * ZP/T)
Eout Zﬁ“‘“ Z Z 5 > exp(z;+zq/T)

1€l EII IpEP(i)

_____ a€A(i)
1 (2i* 2p/7)
su SU CXp Zi*Zp/T
up P =\ ] | | .
Z'sz Z %% P >%)] Z >, exp(zi+2./T)
icl el _____ IpE P (1) acA(i)
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Loss objective: desirable properties

e Generalization to an arbitrarily large number of positives
a. All positives in a multiview batch contribute to the numerator.

b. Forrandomly generated batches with size much greater than the number of
classes, we will have many positive terms.

c. The supervised contrastive losses encourage the encoder to give closely aligned
representations to all positive samples in a batch.

= exp (2 - 2,/7)
ﬁsug Zﬁsugtg - | log P
ou out,? Y .
el iel dfgz_) Upep(i) CLEZA:(z’) exp (zz za/T)
1 exp (21 2,/7)
sup sup __ _n | | i ”
Z‘C’znz Z og :|P(z)|: el Z exp (zi.za//r)

el el L _ 771 pE P (i) aCA(4)
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Loss objective: desirable properties

e The contrastive loss is more powerful when we have more negatives

a. The ability to discriminate between signal (positives) and noise (negatives)

increases.
70.0
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Figure from: T. Chen, S. Kornblith, M. Norouzi, G. Hinton, "A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Paper contributions

1.

Performance boost over the Cross Entropy loss for downstream classification tasks.

Extending contrastive loss: multiple positives per anchor.

Analytical proof that the gradient of the loss Function performs implicit hard negative
mining.

Robustness to image corruption

Less sensitive to hyperparameter changes compared to the Cross Entropy loss.
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Loss objective: desirable properties

e Eliminates the need to perform explicit hard positive & negative mining.

o Unlike most of the previous methods, we do not have the extra computational cost
of searching for hard positive and negative samples.

o  WHY?->This is due to the gradient structure of the supervised contrastive loss
function:

m Weak Positive/Negative samples —> small gradient contribution

m Hard Positive/Negative samples —> big gradient contribution

26



Loss objective: desirable properties

e Eliminates the need to perform explicit hard positive & negative mining.

a. The ability to discriminate between signal (positives) and noise (negatives)

increases.
s L
R — X \Zyp — \Zy; * Zp )24y
aWi . ( p ( L p) ’L)
JLE
8—" X (Zp, — (2; - Z,)Z;)
W;

n
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Temperature parameter

e Smallvs Large temperature value:

o  Large value: makes the contribution of smaller amplitude gradients more important (smoothens the
gradient contribution)

o  Small value: equivalent to optimizing for hard positives/negatives.

o  What works best? —> Authors show that a value of 0.1 (small) yields the best results.

exp (zi* 2p/T)
ZaeA(i) exp (2i * 2a/T)

Formula taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Difference between the (in) and (out) losses

e When the normalization factoris inside the log(), it only contributes as an additive
constant in the gradient of the loss.

e Whenitis outside of the log(), it serves to remove the bias present in the positive
samples in the batch.

o
L5UP Zﬁsup = Z l— I log! P
out out,t N 1108 - -

el i€l IL@'_IPEP(Q IanA:(z') eXp (2 *Za/T) Loss  Top-1
LoP  78.7%
I L exp(zi ¢ 2ol 1) 5% 67.4%

LW = Zﬁsup _ Z —ﬁog: | ! Z i*Zp

in,t | | N ~

el el ! :|P(Z)|: eP(4) Z exXp (zl za/T)

————— PESY aeA(h)

Formulas taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Results - classification accuracy

e All methods use the same backbone (ResNet-50). The authors tuned the hyperparameters for
each method separately and used the best results for each.

e Main takeaway: the Supervised Contrastive Learning method achieves better results than both
Cross-Entropy and the previous best Contrastive Learning approach.

Dataset SImCLR[3] Cross-Entropy Max-Margin [32] SupCon

CIFARI10 93.6 95.0 924 96.0
CIFAR100 70.7 133 70.5 76.5
ImageNet 70,2 182 78.0 78.7

Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020

30



Results - augmentation experiments

e A more capable (deeper) encoder will be able to profit from more complex augmentation
processes.

o Stacked RandAugment performs worse than AutoAugment on ResNet-50.

Loss Architecture Augmentation Top-1  Top-5
Cross-Entropy (baseline) ResNet-50 MixUp [60] 77.4 936
Cross-Entropy (baseline) ~ ResNet-50 CutMix [59] 78.6 94.1
Cross-Entropy (baseline) ResNet-50 AutoAugment [5] 78.2 929
Cross-Entropy (our impl.) ~ ResNet-50 AutoAugment [30] 77.6 933

SupCon ResNet-50 AutoAugment [5] 78.7 94.3
Cross-Entropy (baseline)  ResNet-200 AutoAugment [5] 80.6 95.3
Cross-Entropy (our impl.)  ResNet-200  Stacked RandAugment [49]  80.9 95.2

SupCon ResNet-200  Stacked RandAugment [49]  81.4 95.9

SupCon ResNet-101  Stacked RandAugment [49]  80.2 94.7

Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020



Results - number of positive samples

e Also offers a direct comparison with the
self-supervised approach.

e Inasimilar fashion with the increase of negative
examples, the performance gain obtained by using
multiple positive samples ends up reaching a plateau
region.
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Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A,; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020



Top-1 Accuracy

75.0

74.0

Results - batch size and temperature

Top-1 Accuracy vs Batch size

Cross Entropy

— Supervised Contrastive

1000 2000 3000 4000 5000 6000
Batch size

Figures from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Paper contributions

1.

Performance boost over the Cross Entropy loss For downstream classification tasks.

Extending contrastive loss: multiple positives per anchor.

Analytical proof that the gradient of the loss function performs implicit hard negative mining.

Robustness to image corruption

Less sensitive to hyperparameter changes compared to the Cross Entropy loss.

34



Results - robustness to corruption

ECE = % |B’"|| (Bm) — conf(Bm)|
—m=1 ) acc(B,, con m
Model Test 1 2 3 4 5
Loss Architecture ECE
P— ResNet-50  0.039 0.033 0.032 0.047 0.072 0.098
Py ResNet-200  0.045 0.048 0.036 0.040 0.042 0.052
Supervised ResNet-50  0.024 0.026 0.034 0.048 0.071 0.100
Contrastive ResNet-200  0.041 0.047 0.061 0.071 0.086 0.103
Top-1 Accuracy
— ResNet-50 |_78.74" 65.06 5496 47.64 3593 |_25§8"
PY " ResNet-200 |80.81| 72.80 6528 60.55 52.00 I43.11I
Supervised ResNet-50 |78.81' 6539 5555 48.64 37.27 ;2692
Contrastive ResNet-200 I_81.38| 73.29 66.16 61.80 54.01 I_45.71|

Table from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A,; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Results - hyperparameter stability

00 Hyperparameter Stability Analysis
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73.0/ WM Supervised Contrastive

[ Cross Entropy

Augmentation Optimiz_e_r Learning Rate

Figure from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A,; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020



Results - Transfer Learning

e We observe that all of the loss objectives obtain very similar results.

e The authors state that when it comes to transfer learning, the capability of the encoder seems
to play a much more important role than the loss objective. However, they decided to leave the
connection between the loss objective and the transfer learning capabilities For future work.

Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD

Pets Caltech-101 Flowersi?flezl

SimCLR-50 [3] 88.20 97.70 85.90 75.90 63.50 91.30 88.10 84.10  73.20 89.20 92.10 97.00 |84.81

Xent-50 87.38  96.50 84.93 74.70 63.15 89.57 80.80 8536 76.86 92.35 92.34 96.93 | 84.67 |

SupCon-50  87.23  97.42 84.27 75.15 58.04 91.69 84.09 85.17  74.60 93.47 91.04 96.0 | 84.27

Xent-200 89.36 97.96 86.49 76.50 64.36 90.01 84.22 86.27 76.76 93.48 93.84 97.20 |85.77 |

SupCon-200 88.62  98.28 87.28 76.26 60.46 91.78 88.68 85.18  74.26 93.12 94.91 96.97 |85.67J
38
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Future related work

e X.Chen,Y.Liu,Y.Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction from
Monocular Image”

e H.Cha, J. Lee, J. Shin “Co?L: Contrastive Continual Learning”

e H.Wang,Y. Zhuy, et al. “MaX-DeepLab: End-to-End Panoptic Segmentation with Mask
Transformers”

e D.Dwibedi, Y. Aytar, et al. “With a Little Help from My Friends: Nearest-Neighbor Contrastive
Learning of Visual Representations”
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Contrastive Continual Learning

e Paper: H. Cha, J. Lee, J. Shin “Co?L: Contrastive Continual Learning”

e Task-Incremental-Learning
o  Example: first distribution: apples vs oranges; second distribution: cats vs dogs
o Inthe end, we want the model to be able to perform both types of classifications.

e Domain-Incremental-Learning
o  Example: first distribution: letters written with Font#1; second distribution: letters written with Font#2

e Class-Incremental-Learning

o  Example: First distribution: apples vs oranges; second distribution: cats vs dogs
o Inthe end, we want the model to be able to distinguish between all classes!

40



The power of positive samples

e Paper: X. Chen, Y. Liu, Y. Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction

from Monocular Image”
e The positive samples can be used to create consistency between different views of the same

object.
View 1 ﬁ
>
2D consist 3D ‘rte
consis ency consis ncy

.4

—> B
View 2 'f@

Figure from: X. Chen, Y. Liu, Y. Dong et al. “MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image”



Personal conclusions

e Positive: e Negative:

o  Very well structured

Comes with a comprehensive
supplemental material

Provides analytical proofs to support
its claims.

Comes with a lot of very detailed
experiments.

O

The “monologue” of the paper is too
Focused on the Cross-Entropy
comparison.

Does not show experiments with
“reduced training size"
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Q&A Section
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Difference between the (in) and (out) losses

P
i (zi*zp/T) su su '
: S E  §fpoee .. povR |
: — > exp(zi-zp//'r) ’ 2 1M, |
: sz = p' €P (1) 1 sup sup :

; |
| P if L5 = Lot
| |

exp (2 2p/7)

P_ J—
ZaeA(i) exp (2i* za/T)

ip —

Formulas taken from: Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. “Supervised Contrastive Learning”, NeurlPS 2020
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Contrastive Optimizer

Linear Optimizer

Top-1 Accuracy

LARS
LARS
LARS
RMSProp
RMSProp
RMSProp
Momentum
Momentum
Momentum

LARS
RMSProp
Momentum
LARS
RMSProp
Momentum
LARS
RMSProp
Momentum

78.2
78.7
77.6
77.4
77.8
76.9
17
76.1
Ve
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AutoAugment: [’] A two stage augmentation policy which is trained with reinforcement
learning for Top-1 Accuracy on ImageNet.

RandAugment: [ 1] A two stage augmentation policy that uses a random parameter in place
of parameters tuned by AutoAugment. This parameter needs to be tuned and hence reduces
the search space, while giving better results than AutoAugment.

SimAugment: [/] An augmentation policy which applies random flips, rotations, color
jitters followed by Gaussian blur. We also add an additional step where we warping the
image before the Gaussian blur, which gives a further boost in performance.

Stacked RandAugment: [Y] An augmentation policy which is based on RandAugment [ ]
and SimAugment [ | ]. The strategy involves an additional RandAugment step before doing
the color jitter as done in SimAugment. This leads to a more diverse set of images created
by the augmentation and hence more robust training which generalizes better.
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